что такое статическое и динамическое перемещение
Статическая и динамическая работа мышц
Даже если человек находится в неподвижном положении, его мышцы все равно производят работу, поддерживая корпус и координируя тело в пространстве. В теле человека огромное количество мышц, объединенных в группы, которые работают слаженно, обеспечивая нормальную двигательную активность. Давайте узнаем, что такое статические и динамические мышцы, а также как использовать эти знания для грамотного тренинга. Много полезной информации по тренировкам и питанию вы узнаете в фитнес-клубе «Мультиспорт», где работают опытные специалисты, которые помогут вам достичь желаемых целей в фитнесе и спорте.
Виды работы мышц
Существует два вида работы мышц: статическая и динамическая. Если при работе мышц происходят движения в суставах, то ее называют динамической. Если суставы неподвижны, то работа мышц заключается в поддержании тела в определенном положении. В таком случае мышечную работу называют статической.
Легко понять, чем отличается динамическая и статическая работа мышц: в первом случае суставы совершают движение, во втором случае – остаются неподвижно. Теперь разберемся, чем характеризуется каждый вид работы.
Ключевой характеристикой динамичной работы мышц является энергозатратность. Несмотря на то, что мышцы тратят энергию в статике, во время активного движения ее затрачивается в разы больше.
Динамическая работа мышц
Под динамической работой мышц подразумевается двигательная активность, при которой происходит попеременное расслабление и сокращение мышц для перемещения тела в пространстве или выполнения определенного движения.
При выполнении динамической работы происходят физиологические реакции организма, которых не возникает во время статической мышечной работы. Примером таких реакций служит увеличение пульса и артериального давления во время активности. Интенсивность проявления реакций зависит от разных факторов: тренированности человека, силы и частоты мышечного сокращения, и даже от того, в каком положении находилось тело до начала активности.
Динамическую работу классифицируют по количеству работающих мышц:
Например, базовые упражнения, вроде приседаний, становой тяги, прыжков задействуют огромное количество мышц, в результате чего происходит глобальная или региональная динамическая работа. Изолированные упражнения, например, подъем штанги на бицепс, разгибания на трицепс подключают в работу не слишком много мышц, а потому происходит локальная динамическая работа.
Динамическая работа мышц может быть преодолевающей и уступающей, что значит преодоление сопротивления и непротиводействие. Рассмотрим на примере мышц рук: при отведении выполняется преодолевающая динамическая работа, при приведении – уступающая. А при удержании руки в определенном положении выполняется статическая или удерживающая работа мышц.
Статическая работа мышц
Если вам интересно, какая работа мышц называется динамической и статической, то с первой уже разобрались. Динамическая работа возникает во время любого движения или физической активности. Теперь узнаем, какое отличие у статической работы.
При статической работе мышцы постоянно сокращаются, чтобы удерживать тело в определенном положении или обеспечивать выполнение простых бытовых действий.
При статической работе не происходит чрезмерного потребления кислорода и активации кровотока, но проявляются различные физиологические реакции и происходят энергетические затраты. Например, при выполнении статических упражнений, планки или стульчика тело тратит энергию на удержание определенного положения. Поэтому нагрузку мышц можно получить в статике, хотя энергозатраты, конечно, не сравнятся с динамической работой. Физиологические реакции организма в виде учащения пульса и повышения давления зависит от продолжительности работы и силы сокращений.
Между статической и динамической работой мышц есть различия, например, динамическая работа обеспечивается сокращающимися и расслабляющимися мышцами, а статическая – непрерывно сокращающимися. Но эти виды работы последовательно сменяют друг друга в нашей повседневной деятельности и не могут существовать друг без друга.
Что еще важно знать
В реальной жизни мышцы не работают изолированно, поэтому таблиц о конкретно динамической или статической работе вы не найдете. Важно помнить, что в статике всегда есть элементы динамики и наоборот.
Планируя тренировки на увеличение силы мышц, следует включать плиометрические и статические упражнения чтобы развивать медленные и быстрые мышечные волокна, что сделает вас сильнее и выносливее.
Многих интересует быстрое утомление мышц при статической нагрузке. Дело в том, что перманентное сокращение определенных мышц затрудняет насыщение клеток кислородом и выведение продуктов распада, что приводит к усталости. Во время динамических движений такого не происходит, поэтому поднимать и опускать руку вы можете дольше, чем удерживать ее в неподвижном положении.
Если вас интересует, что такое статические и динамические мышцы, а также как применить знания на практике, то приходите в клуб «Мультиспорт», где вас ждет множество интересных активностей, профессиональные тренеры, современно оборудованные залы и многое другое. Звоните прямо сейчас, чтобы получить подробную консультацию!
Статика vs динамика
Для того, чтобы сравнить статические и динамические нагрузки, нам нужно найти несколько параметров, по которым мы можем это сделать. С точки зрения поддержания формы нас могут интересовать:
— потребление энергии
— влияние на метаболизм
— стимуляция гипертрофии
— влияние на сердечно-сосудистую систему.
Если разобрать эти ключевые моменты, то те, кто читал мои предыдущие публикации, а также те, кто их не читал, но умеет пользоваться поиском, смогут без труда разобраться какое место можно отвести статическим нагрузкам в тренировках.
Трудности перевода.
Четко сравнить два типа нагрузок по перечисленным параметрам тяжело, и в литературе это описано слабо. Причина в том, что трудно привести эти процессы к общему знаменателю.
Например, удержание штанги весом в 100 кг и жим того же веса – как их сравнить? В одном случае выполняется работа (перемещение груза из точки А в точку Б), во втором не выполняется. Может быть, сравнивать время нахождения под нагрузкой? Вроде бы ближе к делу, но в каком положении мышц при статической нагрузке это время засекать, в сокращенном или может растянутом? И т.д.
Но попробуем все же сделать какие-то сравнения для установки отправных точек.
Потребление энергии.
С точки зрения механики, при статической работе не выполняется перемещение груза из точки А в точку Б, а значит не выполняется работа, т.е. энергия на перемещение груза не тратится. Однако все, кто когда-нибудь пытался удержать что-то тяжелое, понимают, что таки тратится и немало. Это подтверждается тем, что статически напряженная мышца выделяет повышенное количество тепла – значит, энергия затрачена, только вот на что?
Ответ на этот вопрос дает теория сокращения мышечных волокон – теория скользящих нитей.
Согласно ей, актиновые и миозиновые волокна, которые обеспечивают сокращение, в мышце находятся параллельно друг другу в строго упорядоченной структуре.
Как это реализовать в реальной жизни я не представляю, и учитывая, что зачастую удержание веса осуществляется не в самом энергозатратном положении, то потери энергии при статике в большинстве случаев будут даже ниже.
Влияние на метаболизм/стимуляция гипертрофии.
По сути, может быть объединено в один блок.
Вот тут у статических нагрузок есть перспектива. Дело все в том, что во время статической нагрузки мышца все время находится в сжатом состоянии, а значит приток и отток крови от нее затруднен, т.к. пережаты сосуды. Это значит, что мышце приходится работать в условиях жесткой гипоксии – полностью анаэробных условий. А это в свою очередь значит, что за аналогичный период работы в мышце образуется большее количество молочной кислоты, чем при динамической работе, и накопится ее больше. А молочная кислота является стимулятором выработки гормона роста, который отвечает за усиление синтеза белка и расщепление жира.
Да и общая стрессовая реакция организма будет больше, а это значит, что и уровень тестостерона может быть поднят выше.
Конечно, при тех же условиях, что и раньше – вес, время, поза. Если вы будете использовать меньший вес, то пережатие сосудов будет не таким выраженным, да и количество мышечных волокон, которые понадобится рекрутировать будет значительно ниже. Где быстрее закончится воздух, в герметической комнате, в которой работает 3 человека, или в такой же, если в ней будет работать 33? То же и с волокнами – если не рекрутировать их массово, то все это будут детские забавы, и рассчитывать на серьезное выделение гормонов или на стрессовый стимул не приходится. В общем, воздастся по труду.
Интересно, почему же тогда статические упражнения не используются для экстремальной накачки мышц или быстрого похудения?
Однозначного ответа на этот вопрос я не знаю, кроме как «видимо не работает так, как рассчитывали». Есть ряд технических вопросов, которые имеют значение и могут служить причиной этому.
Например, неудобство параметрирования нагрузки – если, скажем, в жиме лежа довольно просто следить за прогрессом – на этой тренировке я пожал 100 кг на 5 раз с чистой техникой, на следующей 100 на 6 – значит, есть явный прогресс. Попробуйте описать удержание веса, возникнут трудности.
Кроме того, есть физиологические вопросы, на которые я не нахожу однозначных ответов. Например, каким образом при таком типе нагрузки рекрутируются мышечные волокна – судя по имеющимся данным, в большей степени в дело идут медленные мышечные волокна, т.к. быстрые физиологически не приспособлены для медленной работы. Это несколько меняет расклад по гипертрофии, особенно для спортсменов скоростно-силовых видов спорта.
Есть еще один вопрос, которым наверняка не задаются большинство спортсменов, которые хотят наростить вес или похудеть, но он имеет чуть ли не решающее значение.
Влияние на сердечно-сосудистую систему.
А вот тут разница довольно существенная. Но прежде чем начать ее обсуждать, еще раз приведу удобную аналогию.
Представим себе, что мышцы – это комната, в которой есть ограниченное количество воздуха, а мышечные волокна – это люди, которые в ней работают. Вентиляция осуществляется через дверь и форточку, а также есть система принудительной вентиляции.
В зависимости от текущей нагрузки организм может решать, сколько людей будет в комнате трудиться.
Если задача легкая и ее нужно долго делать, то для этого есть набор тугодумов, а если что-то быстро надо решить, то есть и ребята поживее.
Если нагрузка легкая, то в комнате будет трудиться нужное количество народу, не больше – остальные в резерве. Если же нужно за пару минут горы свернуть – то туда набьется почти весь персонал. Но тут же случится проблема – людей будет так много, что воздуха начнет не хватать, к тому же они будут закрывать проход и вентиляция практически прекратится, и долго работники в таких условиях не протянут.
Это я вам сейчас описал что такое рекрутирование мышечных волокон, как я уже не раз говорил, этот процесс важно понимать при оценке любого вида физической нагрузки.
При динамической работе в организме созданы условия для того, чтобы через мышцы прокачивалось как можно больше крови. Сердце начинает усиленно работать, артериальное давление возрастает, но стенки сосудов в мышцах расслабляются, за счет чего через мышцы более легко прогоняется кровь, а их ритмичные сокращения помогают венозному оттоку и выведению продуктов метаболизма.
В нашей аналогии это означает, что для вентиляции комнаты включают мощный пропеллер, открывают двери и окна, чтобы трудягам было комфортно.
При так называемых циклических нагрузках, когда есть выраженные ритмичные фазы сокращения и расслабления мышц этот механизм работает практически идеально, поэтому у человека есть сверхвысокие ресурсы для увеличения выносливости – чисто конструктивные особенности. Поэтому марафоны можно бежать хоть сутки – при соответствующей тренированности конечно.
По этой причине многие кардиологи так не любят силовые нагрузки – у спортсменов, которые тренируются в силовых стилях, особенно при «неправильном» режиме тренировки (любой спорт больших достижений сложно назвать правильным режимом тренировки с точки зрения кардиологов) развивается гипертрофия стенки миокарда, сердечной мышцы, которая вынуждена прокачивать кровь через сопротивление мышц.
В таком случае гипертрофия миокарда ничем не отличается от гипертрофии скелетной мускулатуры – организм пытается увеличить размер комнаты, чтобы побольше сотрудников влезало для тяжелой работы. Однако такое увеличение в сердечной мышце чревато в связи с особенностями ее кровоснабжения (организации вентиляции), поэтому чрезмерное увеличение его стенок может увеличивать риски инфаркта (перекрыли кислород в комнату полностью), или дилатации сердца (воздуха постоянно не хватает, т.к. в большой комнате вентилировать тяжело, сотрудники далеко от окна страдают и становятся вялыми и дохлыми).
У спортсменов видов спорта, направленных на выносливость, тренировка сердца идет иначе: в большей степени увеличивается объем полости сердца – оно может за одно сокращение выталкивать больший объем крови, а толщина стенок увеличивается слабо, т.к. сопротивление току крови при этих видах нагрузок минимальное.
Ну и осталась статическая нагрузка.
При таком типе нагрузки ситуация для сердца самая неблагоприятная. Как я уже говорил, мышцы находятся в постоянно сжатом состоянии, и по этой причине ток крови через них практически невозможен (точнее минимален). Как это сказывается на работоспособности очевидно.
С точки зрения сердца данная ситуация довольно неприятна, т.к. ему необходимо прокачивать кровь через сопротивление мышц – а скелетные мышцы будут побольше и посильнее сердца.
Если при динамической нагрузке мышцы то напрягаясь, то расслабляясь попеременно сжимают и отпускают сосуды, то в этой ситуации такого не происходит – т.е. мышцы не помогают, а мешают сердцу выполнять свои функции.
Кроме того, что это вызывает все ту же гипертрофию миокарда, во время статической нагрузки выражен еще один эффект: чрезмерная стимуляция симпатической нервной системы. В продолговатый мозг поступают сигналы из хеморецепторов мышц, что нужно увеличить кровоток, он увеличивает давление и частоту сердечных сокращений, но эффекта нет – сигналы продолжают поступать. За счет этого при тяжелой статической работе происходит значительно большее повышение давления и нагрузка на сердце, чем даже при очень тяжелой динамической.
Статическая нагрузка для развития силы
Сдесь механизм действия абсолютно не связан с теми вопросами, о которых мы говорили. Не буду перегружать и так непростой текст, скажу лишь, что тренировка в локауте направлена на связки: в таком положении рук удается удерживать вес на 10-20% больше одноповторного максимума. Мышцы при этом нагружаются незначительно, а вот сухожилия получают серьезный стимул.
Риск такой тренировки в том, что на самом деле она в большей степени направлена не на укрепление мышц, а на «чип-тюнинг», перепрограммирование нервной системы, чтобы она позволяла брать большие веса, и это повышает не только силовые показатели, но и риск травмы (при неграмотном использовании по крайней мере). Но об этом я расскажу как-то в другой раз.
Подводим итоги
Если вы ожидаете, что на основании всего вышесказанного я придам анафеме статические нагрузки и объявлю йогу злом, то вы ошибаетесь. При оценке любой физической нагрузки, как я сказал, не нужно забывать про интенсивность – т.е. по сути про степень рекрутирования мышечных волокон.
Для примера, давайте оценим влияние йоги по перечисленным показателям (учитывая, что в статических позах при йоге рекрутируется довольно малый процент мышечных волокон).
При этом не стоит забывать о множестве других эффектов, которые оказывает йога – многие из них могут быть весьма положительными (стретч эффект, повышение мобильности суставов, улучшение ощущения схемы собственного тела и общего чувства тела, нормализация работы вегетативной нервной системы и т.д.), а другие отрицательными.
Анализ статики и динамики конструкций зданий
Динамические и статические нагрузки
В соответствии с разными характеристиками нагрузок, действующих на конструкции, мы можем разделить их на динамические и статические. Статической нагрузкой называется нагрузка, у которой величина и направление почти не изменяются во времени. Наоборот, динамической нагрузкой называется такая нагрузка, у которой величина и направление изменяются во времени.
Сейсмическое воздействие, суть которого заключается в перемещении конструкций от движения основания, является динамической нагрузкой.
Нагрузки от технологического оборудования, машин, механизмов, нагрузки от транспорта являются динамическими. В нормах «Нагрузки на конструкции сооружений» приведены соответствующие динамические коэффициенты, обеспечивающие безопасность конструкций за счет увеличения влияния ее статистики.
Ветровая нагрузка также принадлежит к динамическим нагрузкам, особенно для верхней части высотных и возвышающихся конструкций, при сильном ветре и податливой конструкции. Действие ветра и конструкций друг на друга является очень сложным динамическим процессом. В обычных случаях применяется коэффициент ветровой пульсации, увеличивающий ветровое статическое действие. В случае сложной конструкции, когда она очень восприимчива к динамическому влиянию ветрового давления, необходимо проводить анализ с выполнением эксперимента и численного решения.
Сейсмическое воздействие является одной из динамических нагрузок, при этом обычно используют упрощенную методику расчета. Сегодня применяется методика спектрального анализа, но для сложных высотных конструкций дополнительно необходимо проводить анализ динамики в единицу времени.
Способ анализа колебаний во времени
Уравнение движения для высотных зданий записывается в следующем виде:
Матрица демпфирования может быть определена следующим образом:
Таким образом, матрицу [С] можно представить в виде линейной комбинации матриц [М] и [К].
Коэффициенты 1/τм и тк можно вычислить следующим образом:
В упругопластическом анализе матрица жесткости [К] изменяется в соответствии со степенью нагружения элемента конструкции, соответствующим образом изменяется матрица [С], зависящая от матрицы [К].
Пошаговое интегрирование является основным способом решения уравнения движения. Решение каждого шага выполняется при разбивке движения на определенные временные отрезки. Пошаговое интегрирование применительно к решению упругопластического уравнения движения и уравнения упругости достаточно трудоемкий процесс.
При проведении линейного анализа можно выбрать методику накладывания типа колебания. Объем расчета в этом случае сокращается.
В соответствии с «Требованиями к сейсмоустойчивым сооружениям» и «Техническими требованиями к конструкциям высотных сооружений» выполнение анализа движения во времени должно соответствовать нижеследующим требованиям:
Максимальная вводимая величина Аmax сейсмической акселерации
Балльность антисейсмической установки
При проектировании сейсмостойких высотных сложных сооружений часто требуется провести дополнительный анализ колебаний во времени. Необходимо выбрать правильную волну сейсмической акселерации для ввода в общую расчетную схему сооружения, которая должна приниматься не более чем 65% расчетного спектра реакции отклика, а осредненный расчет многих волн не менее чем 80% расчетного спектра реакции. В некоторых проектах для удовлетворения вышеуказанных требований увеличивают максимальную величину акселерации в 1,5-2 раза. Данная мера увеличит балльность антисейсмической установки на 1 балл, что неприемлемо, и в этом случае необходимо заново выбирать сейсмическую волну.Примечание. При 7, 8 баллах величины, которые даны в скобках, назначаются соответственно для тех зон, в которых основная проектная акселерация 0,15 g и 0,30 g.
ПроСопромат.ру
Технический портал, посвященный Сопромату и истории его создания
Динамическое действие нагрузок
Удар. Механические колебания
Явление удара возникает в том случае, когда скорость движения рассматриваемого тела или связанных с ним тел изменяется за очень короткий период времени, измеряемый иногда тысячными долями секунды. Благодаря такому резкому изменению скорости от ударяемого тела на ударяющее во время удара передаются весьма большие ускорения, направленные в сторону, обратную движению ударяющего тела, а значит, передаются и большие силы инерции, вызывающие значительные напряжения в обоих соударяющихся телах.
Исследования характера изменений инерционных сил в процессе удара весьма затруднительно, поэтому решение инженерных задач строится обычно на основе приближенной теории упругого удара, в которой применяются следующие основные допущения:
1) Кинематическая энергия ударяющего тела полностью переходит в потенциальную энергию деформации ударяемого тела; при этом пренебрегают энергией, идущей на деформацию ударяющего тела и основания, на котором находится ударяемое тело, а также на тепловые, магнитные и электрические явления.
2) Закон распределения напряжений и деформаций по объему ударяемого тела остается таким же, как и при статическом действии тел; при этом не учитывается изменение этого распределения в том месте, где происходит соударение тел, а также за счет колебаний высокой частоты, сопровождающих явление удара во всем объеме тела.
При выборе расчетных схем в условиях динамического нагружения вводится допущение о неизменности физико-механических характеристик Е, G, μ, σ т и т.п., соответствующих статическим условиям нагружения.
Для движущейся системы можно в каждый момент времени рассматривать состояние равновесия любой ее части под действием внешних усилий и сил инерции.
Динамические напряжения, возникающие при ударе, вычисляются следующим образом:
где σст и τст – нормальное и касательное напряжения в рассматриваемой точке при статическом нагружении системы, μ – динамический коэффициент (динамический коэффициент может обозначаться как μ или kд)..
Если задана высота падения ударяющего тела Н, динамический коэффициент определяется по формуле:, где
это перемещение точки соударения в ударяемой системе при статическом действии веса ударяющего тела (может быть обозначено как ∆ст ).
Если известна скорость падения ударяющего тела в момент касания с ударяемым телом υ, для вычисления динамического коэффициента используется выражение:
где: g=9,81м/сек 2 –ускорение свободного падения,
С учетом масс соударяемых тел расчет kд можно проводить по следующим формулам
здесь m– масса ударяющего тела; М=m+mк, где mк – приведенная масса ударяемой системы.
Для вычисления приведенной массы ударяемой системы часто применяется выражение , где mi— масса i– го элемента системы, δkk – перемещение точки сосредоточения приведенной массы ударяемой системы при действии единичной силы, прикладываемой в этой же точке, δik – перемещение точки сосредоточения массы i– го элемента ударяемой системы при действии единичной силы, прикладываемой в точке сосредоточения приведенной массы системы.
Механические колебания
Механические колебания представляют собой движения точек или частей деформируемой системы, обладающие той или иной степенью повторяемости.
В режиме свободных колебаний для систем с одной степенью свободы без учета сил сопротивления:
— круговая частота свободных (собственных) колебаний
где с – жесткость упругой системы, m – масса колеблющегося тела, ∆ст –перемещение колеблющегося тела при статическом его действии на упругую систему, Im – массовый момент инерции (применительно к крутильным колебаниям);
– период свободных колебаний
— секундная частота свободных колебаний
При наличии в колебательной системе сил сопротивления, пропорциональных скорости движения, круговая частота собственных колебаний определяется следующим образом
где n=α/2m – коэффициент затухания колебаний.
В режиме вынужденных колебаний при действии гармонической возмущающей силы
где F0 – амплитуда возмущающего усилия, р – круговая частота возмущающего усилия для системы с одной степенью свободы выражение для вычисления динамического коэффициента имеет вид
, где ∆F0 – перемещение колеблющегося тела при статическом действии амплитуды возмущающей силы, ∆F – перемещение колеблющегося тела при статическом действии его веса, β – коэффициент нарастания колебаний, определяемый по формулам:
-для систем при отсутствии сил сопротивления:
— для систем при наличии сил сопротивления:
Условия прочности при динамическом действии нагрузок записываются в виде: