что такое сппр в информатике
Системы поддержки принятия решений
СППР возникли в результате слияния управленческих информационных систем и систем управления базами данных.
Система поддержки принятия решений предназначена для поддержки многокритериальных решений в сложной информационной среде. При этом под многокритериальностью понимается тот факт, что результаты принимаемых решений оцениваются не по одному, а по совокупности многих показателей (критериев) рассматриваемых одновременно. Информационная сложность определяется необходимостью учета большого объема данных, обработка которых без помощи современной вычислительной техники практически невыполнима. В этих условиях число возможных решений, как правило, весьма велико, и выбор наилучшего из них «на глаз», без всестороннего анализа может приводить к грубым ошибкам.
Система поддержки решений СППР решает две основные задачи:
В обеих задачах первым и наиболее принципиальным моментом является выбор совокупности критериев, на основе которых в дальнейшем будут оцениваться и сопоставляться возможные решения (будем называть их также альтернативами). Система СППР помогает пользователю сделать такой выбор.
Некоторые из этих методов были разработаны в рамках искусственного интеллекта. Если в основе работы СППР лежат методы искусственного интеллекта, то говорят об интеллектуальной СППР или ИСППР.
Близкие к СППР классы систем — это экспертные системы и автоматизированные системы управления.
Система позволяет решать задачи оперативного и стратегического управления на основе учетных данных о деятельности компании.
Система поддержки принятия решений представляет собой комплекс программных инструментальных средств для анализа данных, моделирования, прогнозирования и принятия управленческих решений, состоящий из собственных разработок корпорации и приобретаемых программных продуктов (Oracle, IBM, Cognos).
Теоретические исследования в области разработки первых систем поддержки принятия решений проводились в технологическом институте Карнеги в конце 50-х начале 60-х годов XX века. Объединить теорию с практикой удалось специалистам из Массачусетского технологического института в 60-х годах. В середине и конце 80-х годов XX столетия стали появляться такие системы, как EIS, GDSS, ODSS. В 1987 году компания Texas Instruments разработала для United Airlines Gate Assignment Display System. Это позволило значительно снизить убытки от полетов и отрегулировать управление различными аэропортами, начиная от Международного аэропорта O’Hare в Чикаго и заканчивая Stapleton в Денвере, штат Колорадо. В 90-х годах сфера возможностей СППР расширялась благодаря внедрению хранилищ данных и инструментов OLAP. Появление новых технологий отчетности сделало СППР незаменимой в менеджменте.
Классификации СППР
По взаимодействию с пользователем выделяют три вида СППР:
По способу поддержки различают:
По сфере использования выделяют:
Общесистемные работают с большими СХД и применяются многими пользователями. Настольные являются небольшими системами и подходят для управления с персонального компьютера одного пользователя.
Архитектура СППР
Функциональные СППР
Являются наиболее простыми с точки зрения архитектуры. Они распространены в организациях, не ставящих перед собой глобальных задач и имеющих невысокий уровень развития информационных технологий. Отличительной особенностью функциональных СППР является то, что анализу подвергаются данные, содержащиеся в файлах операционных систем. Преимуществами подобных СППР являются компактность из-за использования одной платформы и оперативность в связи с отсутствием необходимости перегружать данные в специализированную систему. Из недостатков можно отметить следующие: сужение круга вопросов, решаемых с помощью системы, снижение качества данных из-за отсутствия этапа их очистки, увеличение нагрузки на операционную систему с потенциальной возможностью прекращения ее работы.
СППР, использующие независимые витрины данных
Применяются в крупных организациях, имеющих несколько подразделений, в том числе отделы информационных технологий. Каждая конкретная витрина данных создается для решения определенных задач и ориентирована на отдельный круг пользователей. Это значительно повышает производительность системы. Внедрение подобных структур достаточно просто. Из отрицательных моментов можно отметить то, что данные многократно вводятся в различные витрины, поэтому могут дублироваться. Это повышает затраты на хранение информации и усложняет процедуру унификации. Наполнение витрин данных достаточно сложно в связи с тем, что приходится использовать многочисленные источники. Отсутствует единая картина бизнеса организации, вследствие того что нет окончательной консолидации данных.
СППР на основе двухуровневого хранилища данных
Используется в крупных компаниях, данные которых консолидированы в единую систему. Определения и способы обработки информации в данном случае унифицированы. На обеспечение нормальной работы подобной СППР требуется выделить специализированную команду, которая будет ее обслуживать. Такая архитектура СППР лишена недостатков предыдущей, но в ней нет возможности структурировать данные для отдельных групп пользователей, а также ограничивать доступ к информации. Могут возникнуть трудности с производительностью системы.
СППР на основе трехуровневого хранилища данных
Такие СППР применяют хранилище данных, из которого формируются витрины данных, используемые группами пользователей, решающих сходные задачи. Таким образом, обеспечивается доступ, как к конкретным структурированным данным, так и к единой консолидированной информации. Наполнение витрин данных упрощается ввиду использования проверенных и очищенных данных, находящихся в едином источнике. Имеется корпоративная модель данных. Такие СППР отличает гарантированная производительность. Но существует избыточность данных, которая ведет к росту требований на их хранение. Кроме того, необходимо согласовать подобную архитектуру с множеством областей, имеющих потенциально различные запросы.
Структура СППР
Выделяют четыре основных компонента:
Динамическое моделирование
Особый класс систем стратегического управления и поддержки принятия решений представляют собой системы, позволяющие осуществлять динамическое моделирование процессов. При использовании методов динамического моделирования деятельность компании описывается в виде математической модели, в которой все бизнес-задачи и процессы представляются как система взаимосвязанных вычисляемых показателей.
Решаемые вопросы
СППР позволяет облегчить работу руководителям предприятий и повысить ее эффективность. Они значительно ускоряют решение проблем в бизнесе. СППР способствуют налаживанию межличностного контакта. На их основе можно проводить обучение и подготовку кадров. Данные информационные системы позволяют повысить контроль над деятельностью организации. Наличие четко функционирующей СППР дает большие преимущества по сравнению с конкурирующими структурами. Благодаря предложениям, выдвигаемым СППР, открываются новые подходы к решению повседневных и нестандартных задач.
Использование системы позволяет найти ответы на множество вопросов, возникающих у руководителей компании, например:
У генерального директора:
У руководителя отдела по работе с партнерами:
У руководителя финансового департамента:
У руководителя департамента бюджетного планирования и контроля:
У руководителя департамента закупок:
У руководителя планового отдела (отдела стратегического планирования):
У руководителя отдела сервисного обслуживания:
У руководителя отдела кадров:
У руководителя отдела анализа качества:
Процесс создания системы управленческой отчетности, анализа данных и поддержки принятия решений состоит из следующих этапов :
Итог – продуманные решения опирающиеся на информационный фундамент, адекватные действия, квалифицированное исполнение и как результат успех всего предприятия.
Что такое сппр в информатике
Систе́ма подде́ржки приня́тия реше́ний (СППР) (англ. Decision Support System, DSS ) — компьютерная автоматизированная система, целью которой является помощь людям, принимающим решение в сложных условиях для полного и объективного анализа предметной деятельности. СППР возникли в результате слияния управленческих информационных систем и систем управления базами данных.
Для анализа и выработки предложений в СППР используются разные методы. Это могут быть: информационный поиск, интеллектуальный анализ данных, поиск знаний в базах данных, рассуждение на основе прецедентов, имитационное моделирование, эволюционные вычисления и генетические алгоритмы, нейронные сети, ситуационный анализ, когнитивное моделирование и др. Некоторые из этих методов были разработаны в рамках искусственного интеллекта. Если в основе работы СППР лежат методы искусственного интеллекта, то говорят об интеллектуальной СППР, или ИСППР.
Содержание
Введение
Современные системы поддержки принятия решения (СППР) представляют собой системы, максимально приспособленные к решению задач повседневной управленческой деятельности, являются инструментом, призванным оказать помощь лицам, принимающим решения (ЛПР). С помощью СППР может производится выбор решений некоторых неструктурированных и слабоструктурированных задач, в том числе и многокритериальных.
СППР, как правило, являются результатом мультидисциплинарного исследования, включающего теории баз данных, искусственного интеллекта, интерактивных компьютерных систем, методов имитационного моделирования.
Как справедливо отмечено в [15], «… с момента появления первых разработок по созданию СППР, не было дано четкого определения СППР…».
Ранние определения СППР (в начале 70-х годов прошлого века) отражали следующие три момента: (1) возможность оперировать с неструктурированными или слабоструктурированными задачами, в отличие от задач, с которыми имеет дело исследование операций; (2) интерактивные автоматизированные (то есть реализованные на базе компьютера) системы; (3) разделение данных и моделей. Приведем определения СППР: СППР — совокупность процедур по обработке данных и суждений, помогающих руководителю в принятии решений, основанная на использовании моделей [17].
СППР — это интерактивные автоматизированные системы, помогающие лицу, принимающему решения, использовать данные и модели для решения слабоструктуризированных проблем [17, 20].
СППР — это система, которая обеспечивает пользователям доступ к данным и/или моделям, так что они могут принимать лучшие решения [7].
Последнее определение не отражает участия компьютера в создании СППР, вопросы возможности включения нормативных моделей в состав СППР и др.
В настоящее время нет общепринятого определения СППР, поскольку конструкция СППР существенно зависит от вида задач, для решения которых она разрабатывается, от доступных данных, информации и знаний, а также от пользователей системы. Можно привести, тем не менее, некоторые элементы и характеристики, общепризнанные, как части СППР:
СППР — в большинстве случаев — это интерактивная автоматизированная система, которая помогает пользователю (ЛПР) использовать данные и модели для идентификации и решения задач и принятия решений. Система должна обладать возможностью работать с интерактивными запросами с достаточно простым для изучения языком запросов.
Turban [1] предложил список характеристик идеальной СППР (которая имеет мало общих элементов с определением, приведенным выше). Идеальная СППР:
Рассмотрим кратко историю создания СППР.
История создания СППР
До середины 60-х годов прошлого века создание больших информационных систем (ИС) было чрезвычайно дорогостоящим, поэтому первые ИС менеджмента (так называемые Management Information Systems — MIS) были созданы в эти годы лишь в достаточно больших компаниях. MIS предназначались для подготовки периодических структурированных отчетов для менеджеров.
По мнению первооткрывателей СППР Keen P. G. W., Scott Morton M. S.[16] (1978), концепция поддержки решений была развита на основе «теоретических исследований в области принятия решений… и технических работ по созданию интерактивных компьютерных систем».
Классификации СППР
Для СППР отсутствует не только единое общепринятое определение, но и исчерпывающая классификация. Разные авторы предлагают разные классификации.
На уровне пользователя Haettenschwiler (1999) [12] делит СППР на пассивные, активные и кооперативные СППР. Пассивной СППР называется система, которая помогает процессу принятия решения, но не может вынести предложение, какое решение принять. Активная СППР может сделать предложение, какое решение следует выбрать. Кооперативная позволяет ЛПР изменять, пополнять или улучшать решения, предлагаемые системой, посылая затем эти изменения в систему для проверки. Система изменяет, пополняет или улучшает эти решения и посылает их опять пользователю. Процесс продолжается до получения согласованного решения.
На концептуальном уровне Power (2003) [21] отличает СППР, управляемые сообщениями (Communication-Driven DSS), СППР, управляемые данными (Data-Driven DSS), СППР, управляемые документами (Document-Driven DSS), СППР, управляемые знаниями (Knowledge-Driven DSS) и СППР, управляемые моделями (Model-Driven DSS). СППР, управляемые моделями, характеризуются в основном доступ и манипуляции с математическими моделями (статистическими, финансовыми, оптимизационными, имитационными). Отметим, что некоторые OLAP-системы, позволяющие осуществлять сложный анализ данных, могут быть отнесены к гибридным СППР, которые обеспечивают моделирование, поиск и обработку данных.
Управляемая сообщениями (Communication-Driven DSS) (ранее групповая СППР — GDSS) СППР поддерживает группу пользователей, работающих над выполнением общей задачи.
СППР, управляемые данными (Data-Driven DSS) или СППР, ориентированные на работу с данными (Data-oriented DSS) в основном ориентируются на доступ и манипуляции с данными. СППР, управляемые документами (Document-Driven DSS), управляют, осуществляют поиск и манипулируют неструктурированной информацией, заданной в различных форматах. Наконец, СППР, управляемые знаниями (Knowledge-Driven DSS) обеспечивают решение задач в виде фактов, правил, процедур.
На техническом уровне Power (1997) [19] различает СППР всего предприятия и настольную СППР. СППР всего предприятия подключена к большим хранилищам информации и обслуживает многих менеджеров предприятия. Настольная СППР — это малая система, обслуживающая лишь один компьютер пользователя. Существуют и другие классификации (Alter [3], Holsapple и Whinston [13], Golden, Hevner и Power [11]). Отметим лишь, что превосходная для своего времени классификация Alter‘a, которая разбивала все СППР на 7 классов, в настоящее время несколько устарела.
В зависимости от данных, с которыми эти системы работают, СППР условно можно разделить на оперативные и стратегические. Оперативные СППР предназначены для немедленного реагирования на изменения текущей ситуации в управлении финансово-хозяйственными процессами компании. Стратегические СППР ориентированы на анализ значительных объемов разнородной информации, собираемых из различных источников. Важнейшей целью этих СППР является поиск наиболее рациональных вариантов развития бизнеса компании с учетом влияния различных факторов, таких как конъюнктура целевых для компании рынков, изменения финансовых рынков и рынков капиталов, изменения в законодательстве и др. СППР первого типа получили название Информационных Систем Руководства (Executive Information Systems, ИСР). По сути, они представляют собой конечные наборы отчетов, построенные на основании данных из транзакционной информационной системы предприятия, в идеале адекватно отражающей в режиме реального времени основные аспекты производственной и финансовой деятельности. Для ИСР характерны следующие основные черты:
СППР второго типа предполагают достаточно глубокую проработку данных, специально преобразованных так, чтобы их было удобно использовать в ходе процесса принятия решений. Неотъемлемым компонентом СППР этого уровня являются правила принятия решений, которые на основе агрегированных данных дают возможность менеджерам компании обосновывать свои решения, использовать факторы устойчивого роста бизнеса компании и снижать риски. СППР второго типа в последнее время активно развиваются. Технологии этого типа строятся на принципах многомерного представления и анализа данных (
Архитектура СППР представляется разными авторами по-разному. Приведем пример. Marakas (1999) [18] предложил обобщенную архитектуру, состоящую из 5 различных частей: (a) система управления данными (the data management system — DBMS), (b) система управления моделями (the model management system — MBMS), (c) машина знаний (the knowledge engine (KE)), (d) интерфейс пользователя (the user interface) и (e) пользователи (the user(s)).
Примечания
См. также
Ссылки
Литература
Полезное
Смотреть что такое «СППР» в других словарях:
СППР — Специализированное предприятие противопожарных работ ЗАО http://www.sppr.ru/ Москва, организация СППР система поддержки принятия решений управление СППР светильник подвесной призматический ртутны … Словарь сокращений и аббревиатур
СППР РК — Союз промышленников, предпринимателей и работодателей Республики Коми организация, Республика Коми Источник: http://www.lawtek.ru/news/tek/51818.html … Словарь сокращений и аббревиатур
ИСППР — Система поддержки принятия решений (СППР) (англ. Decision Support System, DSS) компьютерная автоматизированная система, целью которой является помощь людям, принимающим решение в сложных условиях для полного и объективного анализа предметной… … Википедия
Система поддержки принятия решений — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Система поддержки принятия решений (СППР) (англ. Decision Support System … Википедия
система поддержки принятия решения — СППР Область применения СППР — это прежде всего слабоструктурированные проблемы. Для задач, которые относятся к области применения СППР, характерна неопределенность, делающая практически невозможным отыскание единственного объективно… … Справочник технического переводчика
Экономическая информационная система — (ЭИС) представляет собой совокупность организационных, технических, программных и информационных средств, объединённых в единую систему с целью сбора, хранения, обработки и выдачи необходимой информации, предназначенной для выполнения функций… … Википедия
ЭИС — Экономическая информационная система (ЭИС) представляет собой совокупность организационных, технических, программных и информационных средств, объединенных в единую систему с целью сбора, хранения, обработки и выдачи необходимой информации,… … Википедия
Автоматизированная информационная система военного назначения — Совокупность технических, программных средств и системы организационных мероприятий, предназначенная для автоматизации информационных процессов в военно профессиональной деятельности путем реализации одной из информационных технологий. Главное… … Энциклопедия РВСН
Системный анализ — Системный анализ научный метод познания, представляющий собой последовательность действий по установлению структурных связей между переменными или элементами исследуемой системы. Опирается на комплекс общенаучных, экспериментальных,… … Википедия
Список аббревиатур — Это служебный список статей, созданный для координации работ по развитию темы. Данное предупреждение не устанавливается на информационные списки и глоссарии … Википедия
Интеллектуальные системы поддержки принятия решений — краткий обзор
Дисклеймер
Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.
Введение
Существет несколько определений ИСППР, которые, в общем-то, крутятся вокруг одного и того же функционала. В общем виде, ИСППР — это такая система, которая ассистирует ЛПР (Лицам, Принимающим Решения) в принятии этих самых решений, используя инструментарии дата майнинга, моделирования и визуализации, обладает дружелюбным (G)UI, устойчива по качеству, интерактивна и гибка по настройкам.
С начала 80-х уже можно говорить о формировании подклассов СППР, таких как MIS (Management Information System), EIS (Executive Information System), GDSS (Group Decision Support Systems), ODSS (Organization Decision Support Systems) и др. По сути, эти системы представляли собой фреймворки, спососбные работать с данными на различных уровнях иерархии (от индивидуального до общеорганизационного), а внутрь можно было внедрить какую угодно логику. Примером может служить разработанная Texas Instruments для United Airlines система GADS (Gate Assignment Display System), которая поодерживала принятие решений в Field Operations — назначение гейтов, определение оптимального времени стоянки и т.п.
В конце 80-х появились ПСППР (Продвинутые — Advanced), которые позволяли осуществлять «what-if» анализ и использовали более продвинутый инструментарий для моделирования.
Наконец, с середины 90-х на свет стали появляться и ИСППР, в основе которых стали лежать инструменты статистики и машинного обучения, теории игр и прочего сложного моделирования.
Многообразие СППР
На данных момент существует несколько способов классификации СППР, опишем 3 популярных:
По области применения
По соотношению данные\модели (методика Стивена Альтера)
По типу использумого инструментария
Я требую жалобную книгу! нормальную СППР
Несмотря на такое многообразие вариантов классификаций, требования и атрибуты СППР хорошо ложатся в 4 сегмента:
Отдельно отметим такие важные атрибуты, как масштабируемость (в ныне одном подходе agile никуда без этого), способность обрабатывать плохие данные, юзабилити и user-friendly interface, нетребовательность к ресурсам.
Архитектура и дизайн ИСППР
Существет несколько подходов к тому, как архитектурно представить СППР. Пожалуй, лучшее описание разности подходов — «кто во что горазд». Несмотря на разнообразие подходов, осуществляются попытки создать некую унифицированную архитектуру, хотя бы на верхнем уровне.
Действительно, СППР вполне можно разделить на 4 больших слоя:
На схеме ниже представляю мое видение архитектуры, с описанием функционала и примерами инструментов:
С архитектурой более или менее понятно, перейдем к дизайну и собственно построению СППР.
В прицнипе, тут нет никакого rocket science. При построении ИСППР необходимо придерживаться следующих шагов:
Оценивать ИСППР можно двумя способами. Во-первых, по матрице атрибутов, которая представлена выше. Во-вторых, по критериальному чек-листу, который может быть любым и зависеть от вашей конкретной задачи. В качестве примера такого чек-листа я бы привел следующее:
Подчеркну, что это только ИМХО и вы можете сами сделать удобный для себя чек-лист.
А где тут машинное обучение и теория игр?
Да практически везде! По крайней мере в слое, связанном с моделированием.
С одной стороны, есть классические домены, назовем их «тяжелыми», вроде управления цепями поставок, производства, запасов ТМЦ и проч. В тяжелых доменах наши с вами любимые алгоритмы могут привнести дополнительные инсайты для зарекомендовавших себя классических моделей. Пример: предиктивная аналитика по выходам из строя оборудования (машинное обучение) отлично сработается с каким-нибудь FMEA анализом (классика).
С другой стороны, в «легких» доменах, вроде клиентской аналитики, предсказании churn, выплаты кредитов — алгоритмы машинного обучения будут на первых ролях. А в скоринге, например, можно совмещать классику с NLP, когда решаем выдавать ли кредит на основе пакета документов (как раз-таки document driven СППР).
Классические алгоритмы машинного обучения
Допустим, есть у нас задачка: менеджеру по продажам стальной продукции надо еще на этапе получения заявки от клиента понимать, какого качества готовая продукция поступит на склад и применить некое управляющее воздействие, если качество будет ниже требуемого.
Поступаем очень просто:
Шаг 0. Определяем целевую переменную (ну, например, содержание оксида титана в готовой продукции)
Шаг 1. Определяемся с данными (выгружаем из SAP, Access и вообще ото всюду, куда дотянемся)
Шаг 2. Собираем фичи\генерим новые
Шаг 3. Рисуем процесс data flow и запускаем его в продакшн
Шаг 4. Выбираем и обучаем модельку, запускаем ее крутиться на сервере
Шаг 5. Определяем feature importances
Шаг 6. Определяемся со вводом новых данных. Пусть наш менеджер их вводит, например, руками.
Шаг 7. Пишем на коленке простой web-based интерфейс, куда менеджер вводит ручками значения важных фич, это крутится на серваке с моделькой, и в тот же интерфейс выплевываестя прогнозируемое качество продукции
Вуа-ля, ИСППР уровня детсад готова, можно пользоваться.
Подобные «простые» алгоритмы также использует IBM в своей СППР Tivoli, которая позволяет определять состояние своих супер-компьютеров (Watson в первую очередь): на основе логов выводится информация по перформансу Watson, прогнозируется доступность ресурсов, баланс cost vs profit, необходимость обслуживания и т.п.
Компания ABB предлагает своим клиентам DSS800 для анализа работы электродвигателей той же ABB на бумагоделательной линии.
Финская Vaisala, производитель сенсоров для минтранса Финляндии использует ИСППР для предсказания того, в какие периоды необходимо применять анти-обледенитель на дорогах во избежания ДТП.
Опять-таки финская Foredata предлагает ИСППР для HR, которая помогает принимать решения по годности кандидата на позицию еще на этапе отбора резюме.
В аэропорту Дубай в грузовом терминале работает СППР, которая определяет подозрительность груза. Под капотом алгоритмы на основе сопровидительных документов и вводимых сотрудниками таможни данных выделяют подозрительные грузы: фичами при этом являются страна происхождения, информация на упаковке, конкретная информация в полях декларации и т.п.
Обычные нейронные сети
Кроме простого ML, в СППР отлично ложится и Deep Learning.
Некоторые примеры можно найти в ВПК, например в американской TACDSS (Tactical Air Combat Decision Support System). Там внутри крутятся нейронки и эволюционные алгоритмы, помогающие в определении свой-чужой, в оценке вероятности попадания при залпе в данный конкретный момент и прочие задачки.
В немного более реальном мире можно рассмотреть такой пример: в сегменте B2B необходимо определить, выдавать ли кредит организации на основе пакета документов. Это в B2C вас оператор замучает вопросами по телефону, проставит значения фич у себя в системе и озвучит решение алгоритма, в B2B несколько посложнее.
ИСППР там может строиться так: потенциальный заемщик приносит заранее согласованный пакет документов в офис (ну или по email присылает сканы, с подписями и печатями, как положено), документы скармливаются в OCR, затем передаются в NLP-алгоритм, который дальше уже делит слова на фичи и скармливает их в NN. Клиента просят попить кофе (в лучшем случае), или вот где карту оформляли туда и идите прийти после обеда, за это время как раз все и обсчитается и выведет на экран девочке-операционисту зеленый или красный смайлик. Ну или желтый, если вроде ок, но нужно больше справок богу справок.
Подобными алгоритмами пользуются также в МИД: анкета на визу + прочие справки анализируются прямо в посольстве \ консульстве, после чего сотруднику на экране высвечивается один из 3 смайликов: зеленый (визу выдать), желтый (есть вопросы), красный (соискатель в стоп-листе). Если вы когда-нибудь получали визу в США, то то решение, которое озвучивает вам сотрудник консульства — это именно результат работы алгоритма в совокупности с правилами, а никак не его личное субъективное мнение о вас:)
В тяжелых доменах известны также СППР на основе нейронок, определяющие места накопления буфера на производственных линиях (см, напимер, Tsadiras AK, Papadopoulos CT, O’Kelly MEJ (2013) An artificial neural network based decision support system for solving the buffer allocation problem in reliable production lines. Comput Ind Eng 66(4):1150–1162), Общие Нечеткие Нейронные Сети на основе мин-макса (GFMMNN) для кластеризации потребителей воды (Arsene CTC, Gabrys B, Al-Dabass D (2012) Decision support system for water distribution systems based on neural networks and graphs theory for leakage detection. Expert Syst Appl 39(18):13214–13224) и другие.
Вообще стоит отметить, что NN как нельзя лучше подходят для принятия решений в условиях неопределенности, т.е. условиях, в которых и живет реальный бизнес. Алгоритмы кластеризации также хорошо вписались.
Байесовские сети
Бывает иногда и так, что данные у нас неоднородны по видам появления. Приведем пример из медицины. Поступил к нам больной. Что-то мы про него знаем из анкеты (пол, возраст, вес, рост и т.п.) и анамнеза (перенесенные инфаркты, например). Назовем эти данные статическими. А что-то мы про него узнаем в процессе периодического обследования и лечения (несколько раз в день меряем температуру, состав крови и проч). Эти данные назовем динамическими. Понятно, что хорошая СППР должна уметь учитывать все эти данные и выдавать рекомендации, основываясь на всей полноте информации.
Динамические данные обновляются во времени, соответственно, паттерн работы модели будет такой: обучение-решение-обучение, что в общем похоже на работу врача: примерно определить диагноз, прокапать лекарство, посмотреть за реакцией. Таким образом, мы постоянно пребываем в состоянии неопределенности, подействует лечение или нет. И состояние пациента меняется динамически. Т.е. нам надо построить динамическую СППР, причем еще и knowledge driven.
В таких случаях нам отлично помогут Динамические Байесовские Сети (ДБС) — обобщение моделей на основе фильтров Калмана и Скрытой Марковской Модели.
Разделим данные по пациенту на статические и динамические.
Если бы мы строили статическую байесовскую сетку, то нашей задачей было бы посчитать следующую вероятность:
где — узел нашей сетки (вершина графа, по сути), т.е. значение каждой переменной (пол, возраст. ), а С — предсказываемый класс (болезнь).
Статическая сетка выглядит так:
Но это не айс. Состояние пациента меняется, время идет, надо решать, как же его лечить.
Вот для этого и применим ДБС.
Сначала, в день приема пацитента, строим статическую сетку (как на картинке выше). Потом, в каждый день i строим сетку на основе динамически меняющихся данных:
Соответственно, совокупная модель примет следующий вид:
Таким, образом, результат мы расчитаем по следующей формуле:
, где T — совокупное время госпитализации, N — количество переменных на каждом из шагов ДБС.
Внедрить эту модель в СППР необходимо несколько иначе — скорее тут надо идти от обратного, сначала эту модель зафиксировать, а потом строить интерфейс вокруг. Т.е., по сути, мы сделали хард модель, внутри которой динамические элементы.
Теория игр
Теория игр, в свою очередь, гораздо лучше подойдет для ИСППР, созданных для принятия стратегических решений. Приведем пример.
Допустим, на рынке существует олигополия (малое количество соперников), есть определенный лидер и это (увы) не наша компания. Нам необходимо помочь менеджменту принять решение об объемах выпускаемой нами продукции: если мы будем выпускать продукцию в объеме , а наш соперник —
, уйдем мы в минус или нет? Для упрощения возьмем частный случай олигополии — дуополию (2 игрока). Пока вы думаете, RandomForest тут или CatBoost, я вам предложу использовать классику — равновесие Штакельберга. В этой модели поведение фирм описывается динамической игрой с полной совершенной информацией, при этом особенностью игры является наличие лидирующей фирмы, которая первой устанавливает объём выпуска товаров, а остальные фирмы ориентируются в своих расчетах на неё.
Для решения нашей задачи нам надо всего-то посчитать такое , при котором решится задача оптимизации следующего вида:
Для ее решения (сюрприз-сюрприз!) надо лишь приравнять первую производную по к нулю.
При этом для такой модели нам понадобится знать только предложение на рынке и стоимость за товар от нашего конкурента, после чего построить модель и сравнить получившееся q с тем, которое хочет выкинуть на рынок наш менеджмент. Согласитесь, несколько проще и быстрее, чем пилить NN.
Для таких моделей и СППР на их основе подойдет и Excel. Конечно, если вводимые данные надо посчитать, то нужно что-то посложнее, но не сильно. Тот же Power BI справится.
Искать победителя в битве ML vs ToG бессмысленно. Слишком разные подходы к решению задачи, со своими плюсами и минусами.
Что дальше?
С современным состоянием ИСППР вроде бы разобрались, куда идти дальше?
В недавнем интервью Джуда Перл, создатель тех самых байесовских сетей, высказал любопытное мнение. Если слегка перефразировать, то
«все, чем сейчас занимаются эксперты в машинном обучении, это подгонка кривой под данные. Подгонка нетривиальная, сложная и муторная, но все-таки подгонка.»
Скорее всего, вангую, через лет 10 мы перестанем жестко хардкодить модели, и начнем вместо этого повсеместно обучать компьютеры в создаваемых симулируемых средах. Наверное, по этому пути и пойдет реализация ИСППР — по пути AI и прочих скайнетов и WAPR’ов.
Если же посмотреть на более близкую перспективу, то будущее ИСППР за гибкостью решений. Ни один из предложенных способов (классические модели, машинное обучение, DL, теория игр) не универсален с точки зрения эффективности для всех задач. В хорошей СППР должны сочетаться все эти инструменты + RPA, при этом разные модули должны использоваться под разные задачи и иметь разные интерфейсы вывода для разных пользователей. Этакий коктейль, смешанный, но ни в коем случае не взболтанный.