что такое относительная фазовая модуляция
Относительная фазовая модуляция
Относительная фазовая (или фазоразностная) модуляция (PSK) является практическим методом реализации приема сигналов с фазовой модуляцией. Перекодировка модулирующего сигнала данных из абсолютного в относительный код позволяет учитывать при декодировании не абсолютные значения фазы сигнала, а ее относительные сдвиги, что устраняет неопределенность решения о значении символа.
Рисунок 3.12 — Временные диаграммы сигналов при фазовой модуляции:
а) модулирующий сигнал; б) — модулированный сигнал
Модуляция 2-PSK тождественна балансной 2-АМ и имеет то же самое сигнальное созвездие, с которым совпадает и диаграмма состояний (см. рисунок 3.5,а). В цифровых системах передачи применяют сигналы многопозиционной М—PSK, то есть модуляции с повышенной кратностью К (М = 2 К ) по отношению к PSK, кратность которой принята за единицу. Обычно используют наборы сигналов 4-, 8-, 16-PSK, созвездия которых показаны на рисунке 3.5,б. Но 8- и 16-PSK проигрывают 2-PSK и 4-PSK по энергетической эффективности, требуя значительно более высокой мощности передатчика для достижения тех же характеристик.
В цифровом телевидении для передачи по спутниковым трактам и в наземном вещании при тяжелых условиях приема используется двукратная, или четырехфазовая модуляция 4-PSK, обеспечивающая наилучший компромисс по соотношению мощность-полоса. Другое название этого вида модуляции, связанное с методом получения модулированного колебания, квадратурная относительная фазовая модуляция (QРSК — Quadrature Phase Shift Keying).
Модуляция QРSК предоставляет необходимый компромисс между скоростью передачи и помехоустойчивостью и применяется как самостоятельно, так и в комбинациях с другими методами. Диаграммы состояний модуляции QРSК и офсетной дифференциальной QРSК (S-DQРSК) показаны на рисунке 3.13.
Рисунок 3.13 — Диаграммы состояния сигналов QРSК (а) и S-DQРSК (б)
При реализации дифференциального кодирования в сочетании со сдвигом несущей на π/4 сигнальное созвездие формируется двумя четырехточечными созвездиями QРSК, наложенными со сдвигом 45°. В результате в сигнале присутствуют восемь фазовых сдвигов, причем фазы символов выбираются поочередно то из одного созвездия QРSК, то из другого. Последовательные символы имеют относительные фазовые сдвиги, соответствующие одному из четырех углов: ±π/4 и ±3π/4.
Структурная схема модулятора QРSК показана на рисунке 3.14. Входной поток данных D разделяется на два параллельных потока А и В, которые затем в преобразователе кода (ПК) перекодируются в относительный код двух каналов (компонентов) I′ и Q′. Цифровые потоки I′ и Q′ подвергаются сглаживанию в формирующих фильтрах (ФФ), выходные сигналы которых I и Q непосредственно управляют работой четырёхфазового модулятора, состоящего из двух балансных модуляторов и сумматора.
Рисунок 3.14 — Структурная схема модулятора QРSК
Фазовый сдвиг несущих в каналах I и Q‚ равен 90°. Правило кодирования фазовых сдвигов показано в таблице 3.1.
Таблица 3.1 — Кодирование фазовых сдвигов при QРSК
А | В | QPSK |
45° | ||
135° | ||
315° | ||
225° |
Способ модуляции PSK применяется в случаях, когда необходимо сохранить постоянной амплитуду передаваемого сигнала или исключить амплитуду из числа параметров, изменяемых в процессе модуляции. Это очень важно, например, применительно к спутниковым системам ТВ вещания.
ОФМ в связи
Затем читал лекции студентам и аспирантам, увлекая их романтикой науки. Вырастил 28 кандидатов технических наук. Является автором многих изобретений и публикаций, в том числе двух десятков научных и научно-популярных книг. В своих книгах Н. Т. Петрович рассказывает, как можно бороться с помехами в земных и космических каналах связи; раскрывает творческие методы в технике, доказывая, что “+каждый может творить новое, и все можно усовершенствовать”; наводит радиомосты между очагами разума в нашей Галактике, являясь участником ряда международных конференций по проблеме контакта с внеземными цивилизациями. Им предложена своя методика поиска сигналов инопланетян, закрытых в шумах.
Профессор уверен, что мудрая эволюция в каждом гомо сапиенс запрятала наполненный серебром и златом “творческий ящик”, требующий, как аккумулятор, подзарядки. Свой “ящик” Николай Тимофеевич со студенческих лет заряжает горным солнышком, красотой сверкающих вершин и динамикой движения к ним. Последнюю свою книгу “Тайна внеземных цивилизаций” (1999 г.) мастер спорта по альпинизму Н. П. Петрович писал, по его собственным словам, разложив листочки бумаги на толстенной подошве Эльбруса. Главу “Когда же будет контакт?”, к сожалению, унес ветер с гор. Но автор продолжает работать над этой темой.
Классическая фазовая манипуляция и явление “обратной работы”
Это явление задержало на многие годы использование ФМ в каналах связи и вызвало ряд предложений по борьбе с “обратной работой”, в том числе такие: выполнить манипуляцию сигнала на угол, меньший 1800, а появляющийся при этом остаток несущей в спектре сигнала ФМ использовать для формирования опорного напряжения; добавить пилот-сигнал для формирования опорного сигнала; ввести в каждую кодовую комбинацию избыточный символ для обнаружения и исправления “обратной работы” и др. Однако все эти действия нивелировали преимущества ФМ перед ЧМ, требовали более сложной аппаратуры и потому применения не нашли.
Вместе с тем в 1946 г. В. А. Котельников в своей докторской диссертации “Теория потенциальной помехоустойчивости” строго доказал, что сигнал ФМ с манипуляцией на 1800 является наилучшим способом передачи двоичных сигналов и достигаемая при этом потенциальная помехоустойчивость не может быть превзойдена никакими другими методами передачи. Несомненно, исследования В. А. Котельникова послужили стимулом для дальнейших поисков путей внедрения ФМ-сигналов в системы передачи информации.
Относительная фазовая манипуляция
ОФМ на основе сравнения фаз
ОФМ на основе сравнения полярностей
Зависимость вероятности ошибки P(N) от соотношения сигнал/шум
для различных видов манипуляции
Предложенный Н. Т. Петровичем принцип построения систем связи на основе сравнения посылок, на котором базируется ОФМ, имеет более общее значение и может быть применен к амплитудам, частотам, поляризации и другим параметрам посылок. Ценность принципа в том, что он как бы трансформирует канал связи с переменными параметрами в канал с почти постоянными параметрами, так как на отрезке двух сравниваемых посылок заметных изменений в среде распространения не происходит (при достаточно коротких посылках), а сигнал несет в себе необходимую информацию для его детектирования.
Эксперты отвергают ОФМ
Автор ОФМ рассказывал, что, как это заведено в научном мире, эксперты тут же отвергли авторскую заявку на метод передачи ОФМ. Они утверждали, в частности, что сбой одной посылки приведет к сбою всех последующих, хотя автор доказывал, что при искажении фазы одной посылки исказиться может не более двух. Другое утверждение строилось на том, что фаза сигнала “болтается” в среде распространения, особенно в ионосфере, как овечий хвост, и о передаче сигналов фазовым методом не может быть и речи. Доказательства автора (расчетные и экспериментальные) о медленном изменении фазы в интервале длительности двух посылок, на которых идет сравнение фаз, не убеждали.
Один эксперт даже сказал, что ОФМ вообще работать не будет. И демонстрация первого лабораторного макета (он делался подпольно и сегодня напоминал бы ихтиозавра) с магнитной записью предыдущих посылок на большом диске диаметром 15 см, вращаемом мотором, убедили его с трудом. Увидев мотор, он воскликнул: “Мотор в приемнике! Не пойдет! Его помехи загубят любой сигнал!” Хочется отметить, что первым, кто оценил работоспособность и возможности ОФМ, был Виктор Семенович Мельников.
В конце концов после двух лет борьбы было выдано авторское свидетельство с приоритетом от 22 февраля 1954 г. Кстати заметим, что первая публикация о системе “Кинеплекс”, где была применена относительная манипуляция фазы, появилась в США в мае 1957 г.
Первые натурные испытания ОФМ
Лабораторные испытания первых макетов для передачи сигналов ОФМ при действии флуктуационных помех полностью подтвердили теоретические расчеты и преимущества нового метода по сравнению с передачей сигналов ЧМ. Из рис. 4 следует, что по вероятности ошибок (Р), ОФМ превосходит ЧТ и несколько уступает ФМ. При этом в схеме сравнения полярностей такая вероятность немного меньше, чем в схеме сравнения фаз. Этот эффект объясняется введением узкополосного фильтра в цепи формирования опорного сигнала (см. рис. 3).
Первые макеты ОФМ разрабатывались для КВ-диапазона, и судьбу нового метода должны были решить натурные испытания на типичных декаметровых трассах. Н. П. Петрович рассказывал, что творческий подъем и волнение охватили всех, кто готовил макеты к испытанию. Постоянно задавались вопросы: “Что скажет ионосфера? Действительно ли фаза сигнала медленно меняется за время двух посылок?” Первые сигналы путешествовали по ионосфере от Хабаровска до Ватутинок Московской области, чередуя ОФМ и ЧМ. Оба канала работали нормально. Но по мере снижения мощности передатчика в Хабаровске ЧМ стало чаще давать сбои сигналов, а потом и вовсе начало печатать абракадабру, в то время как ОФМ хоть и с ошибками, но выдавало разборчивый текст. Изобретатель ОФМ вспоминает, что все пустились в пляс, обнимались, целовались. Это был настоящий бал, царицей которого была ОФМ.
КВ-трассах в зависимости от условий связи ОФМ снижает вероятность ошибок по сравнению с ЧМ в 2-5 раз.
Дальнейшее развитие ОФМ
Совершенствуя ОФМ, Н. Т. Петрович разработал ряд оригинальных детекторов для ОФМ-сигналов: детектор деления сигналов ОФМ, спектральный детектор, видеодетектор и др. На ее основе им изобретен и исследован ряд новых методов передачи: относительная частотно-фазовая манипуляция (ОЧФМ), трехпозиционная относительная фазовая манипуляция (ТОФМ), передача с помощью фигур Лиссажу, относительная фазовая манипуляция двухчастотная (ОФМД). Из описанных методов наибольшее применение нашла относительная фазовая манипуляция, по праву дополнившая классические методы передачи дискретных сигналов АМ и ЧМ. ОФМ вошла в учебники, изучается студентами используется в наземных, космических и даже гидроакустических системах связи.
Что такое относительная фазовая модуляция
Основы передачи дискретных сообщений
Тема 6. Устройства преобразования сигнала
Согласование может производиться по:
Согласование спектра может производиться двумя путями:
Известно, что спектр последовательности прямоугольных импульсов имеет вид (sin x)/x с максимумом на нулевой частоте. Основная энергия сигналов в этом случае сосредоточена в полосе частот
Канал связи, из-за наличия развязывающих трансформаторов, не пропускает постоянную составляющую. Из-за этого однополярные сигналы будут испытывать значительные искажение.
6.1 ПЕРЕКОДИРОВАНИЕ
При перекодировании исходные сигналы заменяются сигналами другой структуры спектральные характеристики которых лучше согласуются с параметрами заданного канала связи.
Помимо основной задачи – согласования спектров при перекодировании стараются подобрать такой код, который обеспечивал бы:
Простейшим решением является биполярный код (None return zero NRZ)
Преимущество: малая полоса пропускания; простая реализация; нет избыточности.
Недостатки: потеря синхронизации при длинных сериях элементов одного знака.
Обычно при перекодировании в сигнал вводится избыточность.
Различают два способа введения избыточности.
1. Увеличение в процессе перекодирвания основания кода (увеличение числа значащих позиций было две значащих позиции, а стало 3).
Например, код с чередованием полярности (КЧП он же AMI)
2. При втором подходе каждый элемент на единичном интервале заменяется двумя разнополярными импульсами
1 01
0 10
Очевидно, что избыточность такого кода 0,5 (то есть больше чем у КЧП)
+ Так как сигнал изменяется по крайней мере один раз на единичном интервале, то такой код обладает хорошими самосинхронизирующими свойствами.
+ Отсутствие постоянной составляющей
+ Если перепада на единичном интервале нет, то ошибка
Рассмотренный код называют МАНЧЕСТЕРСКИМ
Он находит широкое применение в технологиях локальных сетей, а именно в Ethernet и Token ring.
Следует обратить внимание на спектр кода.
При чередовании 1 и 0 основная гармоника спектра становиться в два раза ниже (по частоте) в сравнении с ситуацией, когда идут элементы одного знака.
(Применительно к Ethernet со скоростью 10 Мбит /с, частота несущей 5 или 10 МГц.)
Для вхождения в синхронизм перед каждым пакетом передается преамбула, составляющая из 7 байт чередования 10101010 и восьмого 10101011.
Оба подхода позволяют устранить постоянную составляющую, чем и достигается согласование.
Потенциальный код 2B1Q
В сетях ISDN и системах xDSL широкое применение находит код 2B1Q.
Для передачи используется 4 значащих позиции, при этом один импульс несёт 2 бита информации
Очевидно, что для данного кода скорость передачи информации в два раза выше скорости модуляции R=2B, или можно сказать при заданной R требуется меньшая полоса частот канала.
Применение логического кодирования для улучшения свойств потенциальных кодов.
Потенциальные коды КЧП, Биполярный Код, 2B1Q-имеют более узкую полосу частот, что является их преимуществом, но страдают появлением постоянной составляющей и потерей синхронизации при передаче длинных серий одинаковых элементов или групп.
Для борьбы с этим явлением применяют логическое кодирование (ЛК).
ЛК – заменяет длинные последовательности элементов, приводящих к постоянному потенциалу другими последовательностями устраняющими данный недостаток.
Для логического кодирования характерны 2 метода:
Избыточные коды основаны на разбиении исходной последовательности на порции (символы) и замене исходной порции, новой имеющей большее количество бит.
Так как символы содержат избыточные биты, то общее количество кодовых комбинаций в них больше, чем в исходных.
Например, код 4В/5В. Каждые четыре элемента исходной последовательности заменяются пятью элементами выходного кода. Выходные элементы выбираются таким образом, чтобы избежать длинных серий “опасных” элементов приводящих к появлению постоянки или потере синхронизации. Остальные комбинации выходного кода считаются запрещёнными, что позволяет обнаружить ошибки.
устранение постоянной составляющей
улучшение синхронизирующих свойств
обнаружение ошибок.
4В/5В используется в FDDI и Fast Ethernet.
8B/6T – Fast Ethernet.
8В/10В – Gigabit Ethernet
Скремблирование – обратимое преобразование структуры цифрового потока без изменения скорости передачи с целью получения свойств случайной последовательности.
6.2 Методы преобразования спектра с использованием несущей
Чаще всего в качестве несущей используют гармоническое колебание:
Воздействуя на соответствующий параметр амплитуду, частоту или фазу, получаем соответственно амплитудную, частотную или фазовую модуляцию
Рассмотрим данные виды модуляции с точки зрения их применимости в технике передачи данных.
Рассмотрим связь ширины спектра и скорости модуляции.
Известно, что если на вход идеального фильтра (с прямоугольной АЧХ и линейной ФЧХ) подать ступенчатую функцию, то на выходе будет присутствовать переходной процесс, длительность которого обратно пропорциональна граничной частоте ФНЧ.
Длительность импульса передаваемого через такую систему не может быть менее чем время нарастания.
Значит, минимальная длительность сигнала равна .
Учитывая, что получим для ФНЧ
.
Если задана полоса пропускания канала , то необходимо выбирать
так, что бы
.
Оценим предельный случай , тогда
.
Значит предельная скорость передачи по каналу при АМ .
Спектр сигнала в этом случае выглядит так
Можно записать ,
Проведем оценку предельной скорости модуляции при ЧМ
Пусть задана полоса канала
При максимальном использовании полосы канала .
Определим ширину полосы канала постоянного тока или
Учитывая что .
Так как получим
Таким образом, при заданном значении максимальная скорость модуляции при ЧМ меньше, чем при АМ, но помехоустойчивость при частотной модуляции выше, поэтому она находит ограниченно применение в системах передачи дискретных сообщений.
Рекомендация V.23 R=B=600 или 1200
КТЧ делится на основной и обратный канал.
основной при 1200 бит/с fср=1700,
при 600 бит/с fср=1500,
Обратный R=75 бит/с для передачи сигналов подтверждения качества приёма.
В данном случае амплитуда и частоты постоянны, изменяется фаза в соответствии с модулирующим сигналом.
Если модулирующий сигнал двоичный “1” или “0”, то значение фазы модулирующего сигнала тоже две. Это значение отсчитывается от фазы несущей.
Обычно, при передачи “1” модулятор формирует синусоидальный сигнал, фаза которого совпадает с фазой несущей. При
Из диаграммы видно, что ФМ состоит, как бы, из двух АМ сигналов несущие которых имеют одинаковую частоту, а фазы сдвинуты на 180°
Поэтому спектр ФМ сигнала будет таким же, как у АМ по ширине, а несущая подавляется из-за противофазности. Но все составляющие увеличатся в 2 раза. Так как амплитуды составляющих больше, то у ФМ выше помехоустойчивость.
Для ФМ можно записать .
Структурные схемы ФМ – сигнала
Дискретный канал с ФМ
На приемной стороне при демодуляции принятый сигнал сравнивается с опорным сигналом, при этом если фазы совпадают, то была 1, нет – 0.
Относительная фазовая модуляция.
Исключение явление “обратной работы” обеспечивается относительной фазовой модуляции ОФМ.
При ОФМ отсчет фазы передаваемого сигнала производится не относительно несущей, а относительно предыдущего элемента.
При модуляции единицы, фаза элементов такая же, как у предыдущего, при нуле меняется на противоположную.
Следует отметить, что фаза первого элемента неопределенна, так как для него нет предыдущего. Прием начинается со второго элемента.
Для получения ОФМ используют те же модуляторы, что для АФМ, но перед подачей на модулятор исходную последовательность перекодируют.
Если в исходной последовательности 0, то соответствующий элемент выходной последовательности изменяется на противоположный относительно предыдущего. Если “1”, то текущий элемент такой же, как предыдущий.
Прием ОФМ сигналов возможен двумя способами.
1. способом сравнения фаз (некогерентный прием);
2. способом сравнения полярностей (когерентный).
В данном случае схема устройства выделения опорного сигнала формирует его из рабочей последовательности. Далее идет сравнение фазы каждого единичного элемента с фазой опорного, как у АФМ. Полученная в результате последовательность поступает в ПКУ, где перекодируется, и на выходе получаем исходную последовательность, так как информация заложена в изменении фазы относительно предыдущего. “Обратной работы” не будет. Однако при ошибке в одном элементе вылетают два, этот и последующий, который с ним сравнивается.
Правила перекодирования ПКУ приема: Если во входной последовательности изменилась значащая позиция, то в выходной последовательности – 0, если нет – 1.
Сравнение способов приема:
Следует заметить, что один ошибочный элемент до ПКУ вызывает две ошибки после ПКУ.
ОФМ используется в модемах разработанных по рекомендации V.26 на скорости 1200 бит / сек.
Многопозиционная фазовая модуляция.
Как было показано ранее, скорость модуляции в канале определяется шириной спектра канала:
Таким образом, максимальная скорость модуляции, которую теоретически можно достичь в кТЧ 6,2 Бод (передача одной боковой) 3,1 кБод (при передаче двух боковых).
Реально же в модемах используются скорости модуляции обычно 1200 и 2400 Бод.
Если для передачи использовать двухпозиционный сигнал, то скорость передачи информации будет такой же низкой R=B=2400 Бит/сек.
Такие скорости сегодня не устраивают потребителя.
Выходом в данном случае является использование сигналов переносящих более чем 1 бит информации (то есть многопозиционных сигналов).
Многопозиционный сигнал имеет более чем две значащих позиции
Число значащих позиций
информационная емкость элемента
Применение данного принципа к относительно фазовой модуляции называется многопозиционной ОФМ.
Рассмотрим простейший случай Двукратная ОФМ.
двукратная или четырехпозиционная.
При ДОФМ два соседних сигнала могут отличаться по фазе на одно из четырех возможных значений.
Первоначально исходная последовательность разбивается на дибиты (по 2 элемента), а затем каждый дибит кодируется на единичном интервале в соответствии с модуляционным кодом.
В данном случае обеспечивается R=2B.
Диаграмма ДОФМ на сигнальной плоскости выглядит так.
Еще более повысить скорость R можно используя:
трехкратную (восьмипозиционную) или
четырехкратную (шестнадцати позиционную ) модуляции.
Однако при увеличении числа разрешенных сдвигов фаз резко уменьшается помехоустойчивость ОФМ.
Уменьшается расстояние между разрешенными сигналами в пространстве. Вследствие этого, ОФМ кратностью более трех не используется.
В КАМ изменяется не только фаза, но и амплитуда. На рисунке показана диаграмма КАМ – 16.
получать скорость передачи информации 2400 ´ 4 = 9600 бит/с.
Такая модуляция используется в протоколе
V. 32, R до 9600 в.p.s.
Квадратурная модуляция имеет большую помехоустойчивость в сравнении с многократной ОФМ. Но при увеличении числа позиций свыше 16 и ее помехоустойчивость оказывается недостаточно для качественной передачи.
Поэтому во всех современных высокоскоростных протоколах КАМ используется, в совокупности с помехоустойчивым кодированием.
- что такое относительная ссылка в excel
- что такое относительная формульная масса