Для чего используется компьютерная память

Какая бывает память

Краткий обзор для тех, кто не хочет глубоко копать.

Если хотите понимать, как работают компьютеры, полезно понимать, как устроена их память. Когда вам будут говорить, что «не хватает памяти», вы будете точно знать, какой именно памяти не хватает и что с этим делать.

Оперативная память

Компьютер, телефон или любое умное устройство работает за счёт программ. Программы — это команды для процессора. Чтобы процессор знал, какую команду выполнить следующей, он должен иметь под рукой всю программу. Для этого программы сидят в оперативной памяти.

👉 Оперативной память называется потому, что доступ к ней должен происходить очень быстро и в любом порядке. Представьте, что это ваш рабочий стол: вы на него сложите все приборы и бумаги, которые нужны для работы прямо сейчас.

Технически оперативная память — это микросхема или, по-другому, чип. Для пользователей она выглядит как чёрный прямоугольник, хотя сам этот прямоугольник — это лишь защитный корпус. Внутри под корпусом массивы из миллионов транзисторов.

Для чего используется компьютерная память. 0101. Для чего используется компьютерная память фото. Для чего используется компьютерная память-0101. картинка Для чего используется компьютерная память. картинка 0101. Краткий обзор для тех, кто не хочет глубоко копать.Модуль оперативной памяти, которые вставляют в компьютеры. Чёрные прямоугольники (в том числе под наклейкой) — те самые чипы памяти. В каждом чипе — 512 МБ оперативной памяти.

Чем больше объём оперативной памяти, тем проще компьютеру запускать одновременно несколько программ. Если компьютеру не хватает оперативы, он либо об этом сообщает, либо начинает складировать часть оперативной памяти на диск, и тогда общая скорость работы снижается.

Особенность оперативной памяти в том, что данные в ней зависят от внешнего электричества. Если компьютер выключить, то всё содержимое оперативной памяти исчезнет. Поэтому компьютеру при включении требуется некоторое время, чтобы всё загрузить обратно и запустить все нужные программы.

Жёсткий магнитный диск

В оперативной памяти программы не могут храниться постоянно, потому что она энергозависимая. Для долгого хранения программ и данных используют жёсткие диски. Если оперативная память — это «рабочий стол», то жёсткий диск — «книжный шкаф».

Жёсткий диск хранит данные хоть во включённом, хоть в выключенном состоянии. Принцип действия простой: внутри корпуса установлены металлические диски, которые при работе очень быстро вращаются, а специальная магнитная головка считывает или записывает на них данные. Для этого она намагничивает всё содержимое диска по кругу, разделяя всё на мелкие радиусы, секторы и ячейки. Намагниченная область — это 1, а ненамагниченная — 0.

Принцип работы очень похож на то, как устроен виниловый проигрыватель с пластинками, только тут вместо иглы — маленький магнит, который может не только читать, но и записывать данные. Чтобы объём хранимых данных и скорость работы с ними была больше, в жёсткие диски ставят одновременно несколько пластин:

Для чего используется компьютерная память. 03. Для чего используется компьютерная память фото. Для чего используется компьютерная память-03. картинка Для чего используется компьютерная память. картинка 03. Краткий обзор для тех, кто не хочет глубоко копать.Жёсткий диск со снятой крышкой. Видны 4 пластины, считывающая головка и большой мощный магнит в левом нижнем углу — он помогает намагничивать нужные участки.

Жёсткие диски считаются довольно долговечным способом хранения: однажды намагнитившись, диск может хранить заряд 5—10 лет. Но со временем из-за квантовых эффектов заряд теряется, поэтому для долговечности архивные жёсткие диски намагничивают заново каждые 3—5 лет.

SSD-накопители

Чтобы увеличить скорость работы компьютера, вместо жёстких дисков используют SSD-диски. Они тоже направлены на то, чтобы долго хранить все данные, но работают по другому принципу.

Вместо пластин с магнитами SSD-накопители используют чипы флеш-памяти, похожие на чипы в обычных флешках. Только в SSD-накопителях используют качественные, дорогие и быстрые чипы.

Главный минус SSD — цена. Если обычный жёсткий диск на 1 терабайт можно купить за 3000 рублей, то SSD того же объёма будет стоить примерно в 3 раза дороже. Поэтому часто в компьютеры ставят два диска — SSD и обычный. На SSD устанавливается операционная система и все рабочие файлы, а на обычном хранят справочную информацию, фильмы, музыку и фотографии — то, к чему не нужен мгновенный доступ.

Для чего используется компьютерная память. 04. Для чего используется компьютерная память фото. Для чего используется компьютерная память-04. картинка Для чего используется компьютерная память. картинка 04. Краткий обзор для тех, кто не хочет глубоко копать.SSD-диск на 256 гигабайт. Подключается к тем же разъёмам, что и простой жёсткий диск.

SSD расшифровывается как Solid State, то есть твердотельный. Твёрдые у него чипы памяти. Если обычный жёсткий диск имеет внутри подвижные элементы, которые легко повредить из-за тряски или ударов, то SSD убьёт только пуля или очень мощный магнитный разряд.

Компьютер тормозит. У меня мало памяти?

Компьютер может тормозить по множеству причин. Вот какие причины могут быть связаны с памятью:

Что делать: перезагрузить, очистить корзину, поискать лишние большие файлы.

Телефон пишет, что не хватает места для новых фото. Пора менять?

Чаще всего достаточно поудалять старые видео, даже не фото. Одна фотография занимает не так много места, как минута видео, поэтому если нужно освободить память — удаляйте видео.

Если у вас Айфон, он автоматически заботится о том, чтобы чистить память: он в фоновом режиме отгружает ваши старые фото и видео в «облако». Когда они нужны, он их сам оттуда загрузит. Но «облако» тоже не резиновое, поэтому чистите память.

Есть компьютер 8 ГБ и 16 ГБ памяти. Какой взять?

Если есть возможность взять побольше памяти — берите. Если есть деньги только на 8 ГБ, то это неприятно, но несмертельно.

Например, на компьютере, на котором это пишется, одновременно запущено несколько вкладок Гугл-документов, работает почта, графический редактор и Телеграм. Вместе с операционной системой это хозяйство занимает 11 ГБ, из которых 2 ГБ занимает Телеграм.

Если бы у компьютера было 8 ГБ, он бы начал в какой-то момент оптимизировать память, усыплять фоновые программы, складывать часть памяти на диск. Оттого, что у вас будет 8 ГБ, компьютер не умрёт.

Раньше 8 ГБ считалось большим объёмом памяти. А сейчас?

А сейчас это средненький такой объём.

Со временем программы и файлы становятся жирнее: в видеороликах больше пикселей, в программах — больше команд и вспомогательных файлов. Поэтому один какой-нибудь современный чатик может занимать сейчас больше памяти, чем огромный архитектурный софт лет 10 назад. Такова цена прогресса.

Можно ли самостоятельно обновить память в компьютере?

В стационарном — можно и нужно. Откручиваете болты, отсоединяете провода, заменяете компоненты. Всё довольно легко, самая неприятная часть процесса — скопившаяся пыль.

В ноутбуках чем дальше — тем это сложнее. Например, лет пять назад можно было спокойно снять крышку ноутбука и заменить в нём и память, и жёсткий диск. Сейчас память и SSD распаяны на плате, поэтому заменить их можно только в авторизованном сервисном центре, да и то не в каждом.

Что лучше для телефона: больше оперативы или больше хранилища?

В оперативной памяти живут текущие программы, поэтому телефоны с кучей оперативы нужны для игр и сложных программ (но кому они нужны на телефоне?). А вот фотографии и видео живут в хранилище. Чем его больше, тем больше фото и видео вы туда запишете.

Источник

Компьютерная память

Для чего используется компьютерная память. 220px 44 MB HDD and 2 GB CF card. Для чего используется компьютерная память фото. Для чего используется компьютерная память-220px 44 MB HDD and 2 GB CF card. картинка Для чего используется компьютерная память. картинка 220px 44 MB HDD and 2 GB CF card. Краткий обзор для тех, кто не хочет глубоко копать.

Для чего используется компьютерная память. magnify clip. Для чего используется компьютерная память фото. Для чего используется компьютерная память-magnify clip. картинка Для чего используется компьютерная память. картинка magnify clip. Краткий обзор для тех, кто не хочет глубоко копать.

Для чего используется компьютерная память. 220px DDR2 ram mounted. Для чего используется компьютерная память фото. Для чего используется компьютерная память-220px DDR2 ram mounted. картинка Для чего используется компьютерная память. картинка 220px DDR2 ram mounted. Краткий обзор для тех, кто не хочет глубоко копать.

Для чего используется компьютерная память. magnify clip. Для чего используется компьютерная память фото. Для чего используется компьютерная память-magnify clip. картинка Для чего используется компьютерная память. картинка magnify clip. Краткий обзор для тех, кто не хочет глубоко копать.

Для чего используется компьютерная память. 220px EToken NG FLASH 4GB. Для чего используется компьютерная память фото. Для чего используется компьютерная память-220px EToken NG FLASH 4GB. картинка Для чего используется компьютерная память. картинка 220px EToken NG FLASH 4GB. Краткий обзор для тех, кто не хочет глубоко копать.

Для чего используется компьютерная память. magnify clip. Для чего используется компьютерная память фото. Для чего используется компьютерная память-magnify clip. картинка Для чего используется компьютерная память. картинка magnify clip. Краткий обзор для тех, кто не хочет глубоко копать.

Компью́терная па́мять (устройство хранения информации, запоминающее устройство) — часть вычислительной машины, физическое устройство или среда для хранения данных, используемых в вычислениях, в течение определённого времени. Память, как и центральный процессор, является неизменной частью компьютера с 1940-х. Память в вычислительных устройствах имеет иерархическую структуру и обычно предполагает использование нескольких запоминающих устройств, имеющих различные характеристики.

В персональных компьютерах «памятью» часто называют один из её видов — динамическая память с произвольным доступом (DRAM), — которая в настоящее время используется в качестве ОЗУ персонального компьютера.

Задачей компьютерной памяти является хранение в своих ячейках состояния внешнего воздействия, запись информации. Эти ячейки могут фиксировать самые разнообразные физические воздействия (см. ниже). Они функционально аналогичны обычному электромеханическому переключателю и информация в них записывается в виде двух чётко различимых состояний — 0 и 1 («выключено»/«включено»). Специальные механизмы обеспечивают доступ (считывание, произвольное или последовательное) к состоянию этих ячеек.

Процесс доступа к памяти разбит на разделённые во времени процессы — операцию записи (сленг. прошивка, в случае записи ПЗУ) и операцию чтения, во многих случаях эти операции происходят под управлением отдельного специализированного устройства — контроллера памяти.

Также различают операцию стирания памяти — занесение (запись) в ячейки памяти одинаковых значений, обычно 0016 или FF16.

Наиболее известные запоминающие устройства, используемые в персональных компьютерах: модули оперативной памяти (ОЗУ), жёсткие диски (винчестеры), дискеты (гибкие магнитные диски), CD- или DVD-диски, а также устройства флеш-памяти.

Содержание

Функции памяти

Компьютерная память обеспечивает поддержку одной из функций современного компьютера, — способность длительного хранения информации. Вместе с центральным процессором запоминающее устройство являются ключевыми звеньями так называемой архитектуры фон Неймана, — принципа, заложенного в основу большинства современных компьютеров общего назначения.

Первые компьютеры использовали запоминающие устройства исключительно для хранения обрабатываемых данных. Их программы реализовывались на аппаратном уровне в виде жёстко заданных выполняемых последовательностей. Любое перепрограммирование требовало огромного объёма ручной работы по подготовке новой документации, перекоммутации, перестройки блоков и устройств и т. д. Использование архитектуры фон Неймана, предусматривающей хранение компьютерных программ и данных в общей памяти, коренным образом переменило ситуацию.

Любая информация может быть измерена в битах и потому, независимо от того, на каких физических принципах и в какой системе счисления функционирует цифровой компьютер (двоичной, троичной, десятичной и т. п.), числа, текстовая информация, изображения, звук, видео и другие виды данных можно представить последовательностями битовых строк или двоичными числами. Это позволяет компьютеру манипулировать данными при условии достаточной ёмкости системы хранения (например, для хранения текста романа среднего размера необходимо около одного мегабайта).

К настоящему времени создано множество устройств, предназначенных для хранения данных, основанных на использовании самых разных физических эффектов. Универсального решения не существует, у каждого имеются свои достоинства и свои недостатки, поэтому компьютерные системы обычно оснащаются несколькими видами систем хранения, основные свойства которых обуславливают их использование и назначение.

Физические основы функционирования

В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям. В современной компьютерной технике часто используются физические свойства полупроводников, когда прохождение тока через полупроводник или его отсутствие трактуются как наличие логических сигналов 0 или 1. Устойчивые состояния, определяемые направлением намагниченности, позволяют использовать для хранения данных разнообразные магнитные материалы. Наличие или отсутствие заряда в конденсаторе также может быть положено в основу системы хранения. Отражение или рассеяние света от поверхности CD, DVD или Blu-ray-диска также позволяет хранить информацию.

Классификация типов памяти

Следует различать классификацию памяти и классификацию запоминающих устройств (ЗУ). Первая классифицирует память по функциональности, вторая же — по технической реализации. Здесь рассматривается первая — таким образом, в неё попадают как аппаратные виды памяти (реализуемые на ЗУ), так и структуры данных, реализуемые в большинстве случаев программно.

Доступные операции с данными

Также предлагается относить память к тому или иному виду по характерной частоте её перезаписи на практике: к RAM относить виды, в которых информация часто меняется в процессе работы, а к ROM — предназначенные для хранения относительно неизменных данных. [1]

Энергозависимость

Метод доступа

Назначение

Организация адресного пространства

Удалённость и доступность для процессора

Положение структур данных, расположенных в основной памяти, в этой классификации неоднозначно. Как правило, их вообще в неё не включают, выполняя классификацию с привязкой к традиционно используемым видам ЗУ. [2]

Управление процессором

Организация хранения данных и алгоритмы доступа к ним

Физические принципы

Эта классификация повторяет соответствующую классификацию ЗУ.

Источник

Компьютерная память

В персональных компьютерах «памятью» часто называют один из её видов — динамическая память с произвольным доступом (DRAM), — которая используется в качестве ОЗУ персонального компьютера.

Задачей компьютерной памяти является хранение в своих ячейках состояния внешнего воздействия, запись информации. Эти ячейки могут фиксировать самые разнообразные физические воздействия. Они функционально аналогичны обычному электромеханическому переключателю и информация в них записывается в виде двух чётко различимых состояний — 0 и 1 («выключено»/«включено»). Специальные механизмы обеспечивают доступ (считывание, произвольное или последовательное) к состоянию этих ячеек.

Процесс доступа к памяти разбит на разделённые во времени процессы — операцию записи (сленг. прошивка, в случае записи ПЗУ) и операцию чтения, во многих случаях эти операции происходят под управлением отдельного специализированного устройства — контроллера памяти.

Также различают операцию стирания памяти — занесение (запись) в ячейки памяти одинаковых значений, обычно 0016 или FF16.

Наиболее известные запоминающие устройства, используемые в персональных компьютерах: модули оперативной памяти (ОЗУ), жёсткие диски (винчестеры), дискеты (гибкие магнитные диски), CD- или DVD-диски, а также устройства флеш-памяти.

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

В информатике бу́фер (англ. buffer), мн. ч. бу́феры — это область памяти, используемая для временного хранения данных при вводе или выводе. Обмен данными (ввод и вывод) может происходить как с внешними устройствами, так и с процессами в пределах компьютера. Буферы могут быть реализованы в аппаратном или программном обеспечении, но подавляющее большинство буферов реализуется в программном обеспечении. Буферы используются, когда существует разница между скоростью получения данных и скоростью их обработки.

Программи́руемая логи́ческая интегра́льная схе́ма (ПЛИС, англ. programmable logic device, PLD) — электронный компонент (интегральная микросхема), используемый для создания конфигурируемых цифровых электронных схем. В отличие от обычных цифровых микросхем, логика работы ПЛИС не определяется при изготовлении, а задаётся посредством программирования (проектирования). Для программирования используются программатор и IDE (отладочная среда), позволяющие задать желаемую структуру цифрового устройства в.

Накопи́тель на жёстких магни́тных ди́сках, или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск, винчестер — запоминающее устройство (устройство хранения информации) произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

Компьютерная ши́на (англ. computer bus) в архитектуре компьютера — подсистема, служащая для передачи данных между функциональными блоками компьютера. В устройстве шины можно различить механический, электрический (физический) и логический (управляющий) уровни.

Ввод-вывод через порты (англ. I/O ports) — схемотехническое решение, организующее взаимодействие процессора и устройств ввода-вывода. Противоположность вводу-выводу через память.

Источник

Вспомнить все. Эволюция компьютерной памяти

Для чего используется компьютерная память. . Для чего используется компьютерная память фото. Для чего используется компьютерная память-. картинка Для чего используется компьютерная память. картинка . Краткий обзор для тех, кто не хочет глубоко копать.Для чего используется компьютерная память. . Для чего используется компьютерная память фото. Для чего используется компьютерная память-. картинка Для чего используется компьютерная память. картинка . Краткий обзор для тех, кто не хочет глубоко копать. Для чего используется компьютерная память. . Для чего используется компьютерная память фото. Для чего используется компьютерная память-. картинка Для чего используется компьютерная память. картинка . Краткий обзор для тех, кто не хочет глубоко копать.

Электромагнитные реле стояли в самых первых компьютерах, а их жизнь на рынке автоматизированных вычислений была недолгой. Однако видоизмененные катушки используют в технике и по сей день.

В стародревние времена — дело было почти 80 лет назад, на заре становления вычислительной техники — память вычислительных устройств было принято делить на три типа. На первичную, вторичную и внешнюю. Сейчас этой терминологией уже никто не пользуется, хотя сама классификация существует и по сей день. Только первичную память теперь называют оперативной, вторичную — внутренними жесткими дисками, ну а внешняя маскируется под всевозможные оптические диски и флэш-накопители.

Прежде чем начать путешествие в прошлое, давайте разберемся в обозначенной выше классификации и поймем, для чего нужен каждый из типов памяти. Компьютер представляет информацию в виде последовательности бит — двоичных цифр со значениями 1 или 0. Общепринятой универсальной единицей информации считают байт, как правило, состоящий из 8 бит. Все используемые компьютером данные занимают некоторое количество байт. К примеру, типичный музыкальный файл занимает 40 миллионов бит — 5 миллионов байт (или 4,8 мегабайта). Центральный процессор не сможет функционировать без элементарного запоминающего устройства, ведь вся его работа сводится к получению, обработке и записи обратно в память. Именно поэтому легендарный Джон фон Нейман (мы не раз упоминали его имя в цикле статей про мейнфреймы) придумал размещать внутри компьютера независимую структуру, где хранились бы все необходимые данные.

Классификация внутренней памяти разделяет носители еще и по скоростному (и энергетическому) принципу. Быстрая первичная (оперативная) память в наше время используется для хранения критичной информации, к которой ЦП обращается наиболее часто. Это ядро операционной системы, исполняемые файлы запущенных программ, промежуточные результаты вычислений. Время доступа — минимально, всего несколько наносекунд.

Первичная память общается с контроллером, размещенным либо внутри процессора (у последних моделей ЦП), либо в виде отдельной микросхемы на материнской плате (северный мост). Цена на оперативку относительно высока, к тому же она энергозависима: выключили компьютер или случайно выдернули шнур из розетки — и вся информация потерялась. Поэтому все файлы хранятся во вторичной памяти — на пластинах жестких дисков. Информация здесь не стирается после отключения питания, а цена за мегабайт очень низкая. Единственный недостаток винчестеров — низкая скорость реакции, она измеряется уже в миллисекундах.

Кстати, интересный факт. На заре развития компьютеров первичную память не отделяли от вторичной. Главный вычислительный блок был очень медленным, и память не давала эффекта бутылочного горлышка. Оперативные и постоянные данные хранились в одних и тех же компонентах. Позже, когда скорость компьютеров подросла, появились новые типы носителей информации.

Назад в прошлое

Компьютер Bendix G15 с барабанной памятью. Оператор в костюме прилагается.

Одним из основных компонентов первых компьютеров были электромагнитные переключатели, разработанные известным американским ученым Джозефом Хенри еще в 1835 году, когда ни о каких компьютерах никто даже не помышлял. Простой механизм состоял из обмотанного проводом металлического сердечника, подвижной железной арматуры и нескольких контактов. Разработка Хенри легла в основу электрического телеграфа Сэмюеля Морзе и Чарльза Витстоуна.

Первый компьютер, построенный на переключателях, появился в Германии в 1939 году. Инженер Конрад Зюс использовал их при создании системной логики устройства Z2. К сожалению, прожила машина недолго, а ее планы и фотографии были утеряны во время бомбардировок Второй мировой войны. Следующее вычислительное устройство Зюса (под именем Z3) увидело свет в 1941 году. Это был первый компьютер, управляемый программой. Основные функции машины реализовывались при помощи 2000 переключателей. Конрад собирался перевести систему на более современные компоненты, но правительство прикрыло финансирование, посчитав, что идеи Зюса не имеют будущего. Как и ее предшественница, Z3 была уничтожена во время бомбардировок союзников.

Электромагнитные переключатели работали очень медленно, но развитие технологий не стояло на месте. Вторым типом памяти для ранних компьютерных систем стали линии задержки. Информацию несли электрические импульсы, которые преобразовывались в механические волны и на низкой скорости перемещались через ртуть, пьезоэлектронный кристалл или магниторезистивную катушку. Есть волна — 1, нет волны — 0. В единицу времени по проводящему материалу могли путешествовать сотни и тысячи импульсов. По завершении своего пути каждая волна трансформировалась обратно в электрический импульс и отсылалась в начало — вот вам и простейшая операция обновления.

Линии задержки разработал американский инженер Джон Преспер Экерт. Компьютер EDVAC, представленный в 1946 году, содержал два блока памяти по 64 линии задержки на основе ртути (5,5 Кб по современным меркам). На тот момент этого было более чем достаточно для работы. Вторичная память также присутствовала в EDVAC — результаты вычислений записывались на магнитную пленку. Другая система, UNIVAC 1, увидевшая свет в 1951 году, использовала 100 блоков на основе линий задержки, а для сохранения данных у нее была сложная конструкция со множеством физических элементов.

Блок памяти на основе линий задержки больше похож на гиперпространственный двигатель космического корабля. Сложно представить, но подобная махина могла сохранить всего несколько бит данных!

За кадром нашего исследования осталось два довольно значимых изобретения в области носителей данных. Оба сделал талантливый сотрудник Bell Labs Эндрю Бобек. Первая разработка — так называемая твисторная память — могла стать прекрасной альтернативой памяти на основе магнитных сердечников. Она во многом повторяла последнюю, но вместо ферритовых колец для хранения данных использовала магнитную пленку. У технологии были два важных преимущества. Во-первых, твисторная память могла одновременно записывать и считывать информацию с целого ряда твисторов. Плюс к этому, было легко наладить ее автоматическое производство. Руководство Bell Labs надеялось, что это позволит существенно снизить цену твисторной памяти и занять перспективный рынок. Разработку финансировали ВВС США, а память должна была стать важной функциональной ячейкой ракет Nike Sentinel. К сожалению, работа над твисторами затянулась, а на первый план вышла память на основе транзисторов. Захват рынка не состоялся.

«Не повезло в первый раз, так повезет во второй»,— подумали в Bell Labs. В начале 70-х годов Эндрю Бобек представил энергонезависимую пузырьковую память. В ее основе лежала тонкая магнитная пленка, которая удерживала небольшие намагниченные области (пузырьки), хранящие двоичные значения. Спустя какое-то время появилась первая компактная ячейка емкостью 4096 бит — устройство размером один квадратный сантиметр обладало емкостью целой планки с магнитными сердечниками.

Изобретением заинтересовались многие компании, и в середине 70-х разработками в области пузырьковой памяти занялись все крупные игроки рынка. Энергонезависимая структура делала пузырьки идеальной заменой как первичной, так и вторичной памяти. Но и тут планам Bell Labs не удалось сбыться — дешевые винчестеры и транзисторная память перекрыли кислород пузырьковой технологии.

Вакуум — наше все

Вакуумные трубки сохранились в технике и по сей день. Особенной любовью они пользуются среди аудиофилов. Считается, что усилительный тракт на основе вакуумных трубок по качеству звука на голову выше современных аналогов.

К концу 40-х годов системная логика компьютеров переехала на вакуумные трубки (они же электронные трубки или термионные шахты). Вместе с ними новый толчок в развитии получили телевидение, устройства для воспроизведения звука, аналоговые и цифровые компьютеры.

Под загадочным словосочетанием «вакуумная трубка» скрывается довольно простой по строению элемент. Он напоминает обычную лампу накаливания. Нить заключена в безвоздушное пространство, при нагреве она испускает электроны, которые попадают на положительно заряженную металлическую пластину. Внутри лампы под напряжением образуется поток электронов. Вакуумная трубка умеет или пропускать, или блокировать (фазы 1 и 0) проходящий через нее ток, выступая в роли электронного компонента компьютеров. Во время работы вакуумные трубки сильно нагреваются, их надо интенсивно охлаждать. Зато они намного быстрее, чем допотопные переключатели.

Первичная память на основе этой технологии появилась в 1946-1947 годы, когда изобретатели Фредди Вильямс и Том Килберн представили трубку Вильямса — Килберна. Метод сохранения данных был весьма остроумным. На трубке при определенных условиях появлялась световая точка, которая слегка заряжала занимаемую поверхность. Зона вокруг точки приобретала отрицательный заряд (ее называли «энергетическим колодцем»). В «колодец» можно было поместить новую точку или оставить его без внимания — тогда первоначальная точка быстро исчезала. Эти превращения истолковывались контроллером памяти как двоичные фазы 1 и 0. Технология была очень популярна. Память на трубках Вильямса — Килберна устанавливали в компьютеры Ferranti Mark 1, IAS, UNIVAC 1103, IBM 701, IBM 702 и Standards Western Automatic Computer (SWAC).

Параллельно свою трубку, именуемую селектрон, разрабатывали инженеры из компании Radio Corporation of America под управлением ученого Владимира Зворыкина. По задумке авторов селектрон должен был вмещать до 4096 бит информации, что в четыре раза больше, чем у трубки Вильямса — Килберна. Предполагалось, что к концу 1946 года будет произведено около 200 селектронов, но производство оказалось очень дорогим.

Наравне с вакуумными трубками в некоторых компьютерах того времени использовалась барабанная память, изобретенная Густавом Таусчеком в 1939 году. Простая конструкция включала большой металлический цилиндр, покрытый сплавом из ферромагнетика. Считывающие головки, в отличие от современных винчестеров, не перемещались по поверхности цилиндра. Контроллер памяти ждал, пока информация самостоятельно пройдет под головками. Барабанная память использовалась в компьютере Атанасова — Берри и некоторых других системах. К сожалению, ее производительность была очень низкой.

Селектрону не было суждено завоевать рынок вычислительных машин — опрятные на вид электронные компоненты так и остались пылиться на свалке истории. И это несмотря на выдающиеся технические характеристики.

В данный момент рынком первичной памяти правит стандарт DDR. Точнее, второе его поколение. Переход на DDR3 состоится уже совсем скоро — осталось дождаться появления недорогих чипсетов с поддержкой нового стандарта. Повсеместная стандартизация сделала сегмент памяти слишком скучным для описания. Производители перестали изобретать новые, уникальные продукты. Все труды сводятся к увеличению рабочей частоты и установке навороченной системы охлаждения.

Технологический застой и робкие эволюционные шаги будут продолжаться до тех пор, пока производители не доберутся до предела возможностей кремния (именно из него изготавливают интегрированные микросхемы). Ведь частоту работы нельзя повышать бесконечно.

Правда, здесь кроется один подвох. Производительности существующих чипов DDR2 достаточно для большинства компьютерных приложений (сложные научные программы не в счет). Установка модулей DDR3, работающих на частоте 1066 МГц и выше, не ведет к ощутимому приросту скорости.

Звездный путь в будущее

Странная текстура на фотографии — это память на основе магнитных сердечников. Перед вами наглядная структура одного из массивов с проводами и ферритовыми кольцами. Представляете, сколько времени приходилось потратить, чтобы найти среди них нерабочий модуль?

Главным недостатком памяти, да и всех остальных компонентов на основе вакуумных трубок было тепловыделение. Трубки приходилось охлаждать при помощи радиаторов, воздуха и даже воды. К тому же постоянный нагрев существенно уменьшал время работы — трубки самым натуральным образом деградировали. Под конец срока эксплуатации их приходилось постоянно настраивать и в конечном итоге менять. Можете представить, скольких усилий и средств стоило сервисное обслуживание вычислительных систем?!

Потом наступило время массивов с близко расположенными ферритовыми кольцами — изобретение американских физиков Эн Вэнг и Вэй-Донг Ву, доработанное студентами под управлением Джея Форрестера из Массачусетского технологического университета (MIT). Через центры колец под углом 45 градусов проходили соединительные провода (по четыре на каждое кольцо в ранних системах, по два в более совершенных). Под напряжением провода намагничивали ферритовые кольца, каждое из которых могло сохранить один бит данных (намагничено — 1, размагничено — 0).

Джей Форрестер разработал систему, при которой управляющие сигналы для многочисленных сердечников шли всего по нескольким проводам. В 1951 году вышла память на основе магнитных сердечников (прямой аналог современной оперативной памяти). В дальнейшем она заняла достойное место во многих компьютерах, включая первые поколения мейнфреймов компаний DEC и IBM. По сравнению с предшественниками у нового типа памяти практически отсутствовали недостатки. Ее надежности хватало для функционирования в военных и даже космических аппаратах. После крушения шаттла «Челленджер», которое привело к смерти семи членов его экипажа, данные бортового компьютера, записанные в памяти с магнитными сердечниками, остались в полной целости и сохранности.

Технологию постепенно совершенствовали. Ферритовые кольца уменьшались в размерах, скорость работы росла. Первые образцы функционировали на частоте порядка 1 МГц, время доступа составляло 60 000 нс — к середине 70-х годов оно сократилось до 600 нс.

Дорогая, я уменьшил нашу память

Производители памяти в наше время больше заботятся о внешнем виде своих продуктов — все равно стандарты и характеристики заранее определены в комиссиях вроде JEDEC.

Следующий скачок в развитии компьютерной памяти произошел, когда были придуманы интегральные микросхемы и транзисторы. Индустрия пошла по пути миниатюризации компонентов с одновременным повышением их производительности. В начале 1970-х полупроводниковая промышленность освоила выпуск микросхем высокой степени интеграции — на сравнительно малой площади теперь умещались десятки тысяч транзисторов. Появились микросхемы памяти емкостью 1 Кбит (1024 бит), небольшие чипы для калькуляторов и даже первые микропроцессоры. Случилась самая настоящая революция.

Особый вклад в развитие первичной памяти внес доктор Роберт Деннард, сотрудник компании IBM. Он разработал первый чип на транзисторе и небольшом конденсаторе. В 1970 году рынок подстегнула компания Intel (которая появилась всего двумя годами раньше), представив чип памяти i1103 емкостью 1 Кбит. Спустя два года этот продукт стал самым продаваемым полупроводниковым чипом памяти в мире.

Во времена первых Apple Macintosh блок оперативной памяти занимал огромную планку (на фото сверху), тогда как объем не превышал 64 Кб.

Микросхемы высокой степени интеграции быстро вытеснили старые типы памяти. С переходом на следующий уровень развития громоздкие мейнфреймы уступили место настольным компьютерам. Основная память в то время окончательно отделилась от вторичной, оформилась в виде отдельных микрочипов емкостью 64, 128, 256, 512 Кбит и даже 1 Мбит.

Наконец, микросхемы первичной памяти переехали с материнских плат на отдельные планки, это сильно облегчило установку и замену неисправных компонентов. Частоты начали расти, время доступа уменьшаться. Первые синхронные динамические чипы SDRAM появились в 1993 году, их представила компания Samsung. Новые микросхемы работали на частоте 100 МГц, время доступа равнялось 10 нс.

С этого момента началось победоносное шествие SDRAM, а к 2000 году этот тип памяти вытеснил всех конкурентов. Определением стандартов на рынке оперативки занялась комиссия JEDEC (Joint Electron Device Engineering Council). Ее участники сформировали спецификации, единые для всех производителей, утвердили частотные и электрические характеристики.

Дальнейшая эволюция не так интересна. Единственное значимое событие произошло в 2000 году, когда на рынке появилась оперативная память стандарта DDR SDRAM. Она обеспечила удвоенную (по сравнению с обычной SDRAM) пропускную способность и создала задел для будущего роста. Вслед за DDR в 2004 году появился стандарт DDR2, который до сих пор пользуется наибольшей популярностью.

В современном IT-мире фразой Patent Troll (патентный тролль) называют фирмы, которые зарабатывают деньги на судебных исках. Они мотивируют это тем, что другие компании нарушили их авторские права. Целиком и полностью под это определение попадает разработчик памяти Rambus.

С момента основания в 1990 году Rambus занималась лицензированием своих технологий сторонним компаниям. К примеру, ее контроллеры и микросхемы памяти можно найти в приставках Nintendo 64 и PlayStation 2. Звездный час Rambus настал в 1996 году, когда Intel заключила с ней соглашение на использование в своих продуктах памяти RDRAM и разъемов RIMM.

Сначала все шло по плану. Intel получила в свое распоряжение продвинутую технологию, а Rambus довольствовалась партнерством с одним из крупнейших игроков IT-индустрии. К сожалению, высокая цена модулей RDRAM и чипсетов Intel поставили крест на популярности платформы. Ведущие производители материнских плат использовали чипсеты VIA и платы с разъемами под обычную SDRAM.

Rambus поняла, что на этом этапе она проиграла рынок памяти, и начала свои затяжные игры с патентами. Первым делом ей под руку попалась свежая разработка JEDEC — память стандарта DDR SDRAM. Rambus накинулась на нее, обвинив создателей в нарушении авторских прав. В течение некоторого времени компания получала денежные отчисления, однако уже следующее судебное разбирательство с участием Infineon, Micron и Hynix расставило все по своим местам. Суд признал, что технологические наработки в области DDR SDRAM и SDRAM не принадлежат Rambus.

С тех пор общее количество исков со стороны Rambus к ведущим производителям оперативки превысило все мыслимые пределы. И, похоже, такой образ жизни компанию вполне устраивает.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *