что такое система поддержки принятия решений

Интеллектуальные системы поддержки принятия решений — краткий обзор

что такое система поддержки принятия решений. image loader. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-image loader. картинка что такое система поддержки принятия решений. картинка image loader. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Дисклеймер

Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Введение

Существет несколько определений ИСППР, которые, в общем-то, крутятся вокруг одного и того же функционала. В общем виде, ИСППР — это такая система, которая ассистирует ЛПР (Лицам, Принимающим Решения) в принятии этих самых решений, используя инструментарии дата майнинга, моделирования и визуализации, обладает дружелюбным (G)UI, устойчива по качеству, интерактивна и гибка по настройкам.

С начала 80-х уже можно говорить о формировании подклассов СППР, таких как MIS (Management Information System), EIS (Executive Information System), GDSS (Group Decision Support Systems), ODSS (Organization Decision Support Systems) и др. По сути, эти системы представляли собой фреймворки, спососбные работать с данными на различных уровнях иерархии (от индивидуального до общеорганизационного), а внутрь можно было внедрить какую угодно логику. Примером может служить разработанная Texas Instruments для United Airlines система GADS (Gate Assignment Display System), которая поодерживала принятие решений в Field Operations — назначение гейтов, определение оптимального времени стоянки и т.п.

В конце 80-х появились ПСППР (Продвинутые — Advanced), которые позволяли осуществлять «what-if» анализ и использовали более продвинутый инструментарий для моделирования.

Наконец, с середины 90-х на свет стали появляться и ИСППР, в основе которых стали лежать инструменты статистики и машинного обучения, теории игр и прочего сложного моделирования.

Многообразие СППР

На данных момент существует несколько способов классификации СППР, опишем 3 популярных:

По области применения

По соотношению данные\модели (методика Стивена Альтера)

По типу использумого инструментария

Я требую жалобную книгу! нормальную СППР

Несмотря на такое многообразие вариантов классификаций, требования и атрибуты СППР хорошо ложатся в 4 сегмента:

что такое система поддержки принятия решений. image loader. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-image loader. картинка что такое система поддержки принятия решений. картинка image loader. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Отдельно отметим такие важные атрибуты, как масштабируемость (в ныне одном подходе agile никуда без этого), способность обрабатывать плохие данные, юзабилити и user-friendly interface, нетребовательность к ресурсам.

Архитектура и дизайн ИСППР

Существет несколько подходов к тому, как архитектурно представить СППР. Пожалуй, лучшее описание разности подходов — «кто во что горазд». Несмотря на разнообразие подходов, осуществляются попытки создать некую унифицированную архитектуру, хотя бы на верхнем уровне.

Действительно, СППР вполне можно разделить на 4 больших слоя:

На схеме ниже представляю мое видение архитектуры, с описанием функционала и примерами инструментов:

что такое система поддержки принятия решений. image loader. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-image loader. картинка что такое система поддержки принятия решений. картинка image loader. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

С архитектурой более или менее понятно, перейдем к дизайну и собственно построению СППР.

В прицнипе, тут нет никакого rocket science. При построении ИСППР необходимо придерживаться следующих шагов:

что такое система поддержки принятия решений. image loader. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-image loader. картинка что такое система поддержки принятия решений. картинка image loader. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Оценивать ИСППР можно двумя способами. Во-первых, по матрице атрибутов, которая представлена выше. Во-вторых, по критериальному чек-листу, который может быть любым и зависеть от вашей конкретной задачи. В качестве примера такого чек-листа я бы привел следующее:

что такое система поддержки принятия решений. image loader. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-image loader. картинка что такое система поддержки принятия решений. картинка image loader. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Подчеркну, что это только ИМХО и вы можете сами сделать удобный для себя чек-лист.

А где тут машинное обучение и теория игр?

Да практически везде! По крайней мере в слое, связанном с моделированием.

С одной стороны, есть классические домены, назовем их «тяжелыми», вроде управления цепями поставок, производства, запасов ТМЦ и проч. В тяжелых доменах наши с вами любимые алгоритмы могут привнести дополнительные инсайты для зарекомендовавших себя классических моделей. Пример: предиктивная аналитика по выходам из строя оборудования (машинное обучение) отлично сработается с каким-нибудь FMEA анализом (классика).

С другой стороны, в «легких» доменах, вроде клиентской аналитики, предсказании churn, выплаты кредитов — алгоритмы машинного обучения будут на первых ролях. А в скоринге, например, можно совмещать классику с NLP, когда решаем выдавать ли кредит на основе пакета документов (как раз-таки document driven СППР).

Классические алгоритмы машинного обучения

Допустим, есть у нас задачка: менеджеру по продажам стальной продукции надо еще на этапе получения заявки от клиента понимать, какого качества готовая продукция поступит на склад и применить некое управляющее воздействие, если качество будет ниже требуемого.

Поступаем очень просто:

Шаг 0. Определяем целевую переменную (ну, например, содержание оксида титана в готовой продукции)
Шаг 1. Определяемся с данными (выгружаем из SAP, Access и вообще ото всюду, куда дотянемся)
Шаг 2. Собираем фичи\генерим новые
Шаг 3. Рисуем процесс data flow и запускаем его в продакшн
Шаг 4. Выбираем и обучаем модельку, запускаем ее крутиться на сервере
Шаг 5. Определяем feature importances
Шаг 6. Определяемся со вводом новых данных. Пусть наш менеджер их вводит, например, руками.
Шаг 7. Пишем на коленке простой web-based интерфейс, куда менеджер вводит ручками значения важных фич, это крутится на серваке с моделькой, и в тот же интерфейс выплевываестя прогнозируемое качество продукции

Вуа-ля, ИСППР уровня детсад готова, можно пользоваться.

Подобные «простые» алгоритмы также использует IBM в своей СППР Tivoli, которая позволяет определять состояние своих супер-компьютеров (Watson в первую очередь): на основе логов выводится информация по перформансу Watson, прогнозируется доступность ресурсов, баланс cost vs profit, необходимость обслуживания и т.п.

Компания ABB предлагает своим клиентам DSS800 для анализа работы электродвигателей той же ABB на бумагоделательной линии.

Финская Vaisala, производитель сенсоров для минтранса Финляндии использует ИСППР для предсказания того, в какие периоды необходимо применять анти-обледенитель на дорогах во избежания ДТП.

Опять-таки финская Foredata предлагает ИСППР для HR, которая помогает принимать решения по годности кандидата на позицию еще на этапе отбора резюме.

В аэропорту Дубай в грузовом терминале работает СППР, которая определяет подозрительность груза. Под капотом алгоритмы на основе сопровидительных документов и вводимых сотрудниками таможни данных выделяют подозрительные грузы: фичами при этом являются страна происхождения, информация на упаковке, конкретная информация в полях декларации и т.п.

Обычные нейронные сети

Кроме простого ML, в СППР отлично ложится и Deep Learning.

Некоторые примеры можно найти в ВПК, например в американской TACDSS (Tactical Air Combat Decision Support System). Там внутри крутятся нейронки и эволюционные алгоритмы, помогающие в определении свой-чужой, в оценке вероятности попадания при залпе в данный конкретный момент и прочие задачки.

В немного более реальном мире можно рассмотреть такой пример: в сегменте B2B необходимо определить, выдавать ли кредит организации на основе пакета документов. Это в B2C вас оператор замучает вопросами по телефону, проставит значения фич у себя в системе и озвучит решение алгоритма, в B2B несколько посложнее.

ИСППР там может строиться так: потенциальный заемщик приносит заранее согласованный пакет документов в офис (ну или по email присылает сканы, с подписями и печатями, как положено), документы скармливаются в OCR, затем передаются в NLP-алгоритм, который дальше уже делит слова на фичи и скармливает их в NN. Клиента просят попить кофе (в лучшем случае), или вот где карту оформляли туда и идите прийти после обеда, за это время как раз все и обсчитается и выведет на экран девочке-операционисту зеленый или красный смайлик. Ну или желтый, если вроде ок, но нужно больше справок богу справок.

Подобными алгоритмами пользуются также в МИД: анкета на визу + прочие справки анализируются прямо в посольстве \ консульстве, после чего сотруднику на экране высвечивается один из 3 смайликов: зеленый (визу выдать), желтый (есть вопросы), красный (соискатель в стоп-листе). Если вы когда-нибудь получали визу в США, то то решение, которое озвучивает вам сотрудник консульства — это именно результат работы алгоритма в совокупности с правилами, а никак не его личное субъективное мнение о вас:)

В тяжелых доменах известны также СППР на основе нейронок, определяющие места накопления буфера на производственных линиях (см, напимер, Tsadiras AK, Papadopoulos CT, O’Kelly MEJ (2013) An artificial neural network based decision support system for solving the buffer allocation problem in reliable production lines. Comput Ind Eng 66(4):1150–1162), Общие Нечеткие Нейронные Сети на основе мин-макса (GFMMNN) для кластеризации потребителей воды (Arsene CTC, Gabrys B, Al-Dabass D (2012) Decision support system for water distribution systems based on neural networks and graphs theory for leakage detection. Expert Syst Appl 39(18):13214–13224) и другие.

Вообще стоит отметить, что NN как нельзя лучше подходят для принятия решений в условиях неопределенности, т.е. условиях, в которых и живет реальный бизнес. Алгоритмы кластеризации также хорошо вписались.

Байесовские сети

Бывает иногда и так, что данные у нас неоднородны по видам появления. Приведем пример из медицины. Поступил к нам больной. Что-то мы про него знаем из анкеты (пол, возраст, вес, рост и т.п.) и анамнеза (перенесенные инфаркты, например). Назовем эти данные статическими. А что-то мы про него узнаем в процессе периодического обследования и лечения (несколько раз в день меряем температуру, состав крови и проч). Эти данные назовем динамическими. Понятно, что хорошая СППР должна уметь учитывать все эти данные и выдавать рекомендации, основываясь на всей полноте информации.

Динамические данные обновляются во времени, соответственно, паттерн работы модели будет такой: обучение-решение-обучение, что в общем похоже на работу врача: примерно определить диагноз, прокапать лекарство, посмотреть за реакцией. Таким образом, мы постоянно пребываем в состоянии неопределенности, подействует лечение или нет. И состояние пациента меняется динамически. Т.е. нам надо построить динамическую СППР, причем еще и knowledge driven.

В таких случаях нам отлично помогут Динамические Байесовские Сети (ДБС) — обобщение моделей на основе фильтров Калмана и Скрытой Марковской Модели.

Разделим данные по пациенту на статические и динамические.

что такое система поддержки принятия решений. . что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-. картинка что такое система поддержки принятия решений. картинка . Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Если бы мы строили статическую байесовскую сетку, то нашей задачей было бы посчитать следующую вероятность:

что такое система поддержки принятия решений. 5177f07ac401d2f09335860746974e6e. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-5177f07ac401d2f09335860746974e6e. картинка что такое система поддержки принятия решений. картинка 5177f07ac401d2f09335860746974e6e. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

где что такое система поддержки принятия решений. c415b88cc7a7b5039160e49de9160b6e. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-c415b88cc7a7b5039160e49de9160b6e. картинка что такое система поддержки принятия решений. картинка c415b88cc7a7b5039160e49de9160b6e. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.— узел нашей сетки (вершина графа, по сути), т.е. значение каждой переменной (пол, возраст. ), а С — предсказываемый класс (болезнь).

Статическая сетка выглядит так:

что такое система поддержки принятия решений. pkqpi3zt4g9yi2veocliosvqa7c. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-pkqpi3zt4g9yi2veocliosvqa7c. картинка что такое система поддержки принятия решений. картинка pkqpi3zt4g9yi2veocliosvqa7c. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Но это не айс. Состояние пациента меняется, время идет, надо решать, как же его лечить.

Вот для этого и применим ДБС.

Сначала, в день приема пацитента, строим статическую сетку (как на картинке выше). Потом, в каждый день i строим сетку на основе динамически меняющихся данных:

что такое система поддержки принятия решений. . что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-. картинка что такое система поддержки принятия решений. картинка . Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Соответственно, совокупная модель примет следующий вид:

что такое система поддержки принятия решений. ljdwsslbledpfpzyopr7tzj85l4. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-ljdwsslbledpfpzyopr7tzj85l4. картинка что такое система поддержки принятия решений. картинка ljdwsslbledpfpzyopr7tzj85l4. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Таким, образом, результат мы расчитаем по следующей формуле:

что такое система поддержки принятия решений. f1b67fd066d0e5699eb7e2b854488f41. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-f1b67fd066d0e5699eb7e2b854488f41. картинка что такое система поддержки принятия решений. картинка f1b67fd066d0e5699eb7e2b854488f41. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

, где T — совокупное время госпитализации, N — количество переменных на каждом из шагов ДБС.

Внедрить эту модель в СППР необходимо несколько иначе — скорее тут надо идти от обратного, сначала эту модель зафиксировать, а потом строить интерфейс вокруг. Т.е., по сути, мы сделали хард модель, внутри которой динамические элементы.

Теория игр

Теория игр, в свою очередь, гораздо лучше подойдет для ИСППР, созданных для принятия стратегических решений. Приведем пример.

Допустим, на рынке существует олигополия (малое количество соперников), есть определенный лидер и это (увы) не наша компания. Нам необходимо помочь менеджменту принять решение об объемах выпускаемой нами продукции: если мы будем выпускать продукцию в объеме что такое система поддержки принятия решений. 902375d8221ed71895ebfc68e19cc324. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-902375d8221ed71895ebfc68e19cc324. картинка что такое система поддержки принятия решений. картинка 902375d8221ed71895ebfc68e19cc324. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI., а наш соперник — что такое система поддержки принятия решений. 5dfbe77aa20b4096fb56e8b57ec2f0b3. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-5dfbe77aa20b4096fb56e8b57ec2f0b3. картинка что такое система поддержки принятия решений. картинка 5dfbe77aa20b4096fb56e8b57ec2f0b3. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI., уйдем мы в минус или нет? Для упрощения возьмем частный случай олигополии — дуополию (2 игрока). Пока вы думаете, RandomForest тут или CatBoost, я вам предложу использовать классику — равновесие Штакельберга. В этой модели поведение фирм описывается динамической игрой с полной совершенной информацией, при этом особенностью игры является наличие лидирующей фирмы, которая первой устанавливает объём выпуска товаров, а остальные фирмы ориентируются в своих расчетах на неё.
Для решения нашей задачи нам надо всего-то посчитать такое что такое система поддержки принятия решений. 902375d8221ed71895ebfc68e19cc324. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-902375d8221ed71895ebfc68e19cc324. картинка что такое система поддержки принятия решений. картинка 902375d8221ed71895ebfc68e19cc324. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI., при котором решится задача оптимизации следующего вида: что такое система поддержки принятия решений. 4ae2627be0229348da7e9bcabba786b7. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-4ae2627be0229348da7e9bcabba786b7. картинка что такое система поддержки принятия решений. картинка 4ae2627be0229348da7e9bcabba786b7. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Для ее решения (сюрприз-сюрприз!) надо лишь приравнять первую производную по что такое система поддержки принятия решений. 1f42000bc95abfc0db53e3a5e78f3cb8. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-1f42000bc95abfc0db53e3a5e78f3cb8. картинка что такое система поддержки принятия решений. картинка 1f42000bc95abfc0db53e3a5e78f3cb8. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.к нулю.

При этом для такой модели нам понадобится знать только предложение на рынке и стоимость за товар от нашего конкурента, после чего построить модель и сравнить получившееся q с тем, которое хочет выкинуть на рынок наш менеджмент. Согласитесь, несколько проще и быстрее, чем пилить NN.

Для таких моделей и СППР на их основе подойдет и Excel. Конечно, если вводимые данные надо посчитать, то нужно что-то посложнее, но не сильно. Тот же Power BI справится.

Искать победителя в битве ML vs ToG бессмысленно. Слишком разные подходы к решению задачи, со своими плюсами и минусами.

что такое система поддержки принятия решений. image loader. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-image loader. картинка что такое система поддержки принятия решений. картинка image loader. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Что дальше?

С современным состоянием ИСППР вроде бы разобрались, куда идти дальше?

В недавнем интервью Джуда Перл, создатель тех самых байесовских сетей, высказал любопытное мнение. Если слегка перефразировать, то

«все, чем сейчас занимаются эксперты в машинном обучении, это подгонка кривой под данные. Подгонка нетривиальная, сложная и муторная, но все-таки подгонка.»

Скорее всего, вангую, через лет 10 мы перестанем жестко хардкодить модели, и начнем вместо этого повсеместно обучать компьютеры в создаваемых симулируемых средах. Наверное, по этому пути и пойдет реализация ИСППР — по пути AI и прочих скайнетов и WAPR’ов.

Если же посмотреть на более близкую перспективу, то будущее ИСППР за гибкостью решений. Ни один из предложенных способов (классические модели, машинное обучение, DL, теория игр) не универсален с точки зрения эффективности для всех задач. В хорошей СППР должны сочетаться все эти инструменты + RPA, при этом разные модули должны использоваться под разные задачи и иметь разные интерфейсы вывода для разных пользователей. Этакий коктейль, смешанный, но ни в коем случае не взболтанный.

Источник

Что такое система поддержки принятия решений

Под современными системами принятия решений понимают специальное ПО, позволяющее менеджерам среднего и высшего звена принимать взвешенные обоснованные решения. Такая программа функционирует, как база данных с функциями их накопления, анализа, формирования удобных для работы отчетов. Она позволяет определиться с выбором даже в быстро меняющейся обстановке и при высоком проценте неопределенности.

В мировой практике такие информационно-программные продукты получили название DSS-систем (Decision Support Systems). Они широко используются для организации эффективного управления бизнесом и облегчают работу менеджеров по сбору и анализу информации, выявлению проблем и принятию верных решений.

что такое система поддержки принятия решений. about 4. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-about 4. картинка что такое система поддержки принятия решений. картинка about 4. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Виды и типы СППР

В зависимости от способа воздействия на процесс принятия решения различают пассивные, активные и комбинированные DSS-системы. Первые предоставляют лишь информацию для принятия решений, вторые предлагают альтернативные готовые варианты, третьи предполагают тесную работу в контакте: менеджер может корректировать предложенное системой решение и согласовывать до обретения им оптимальной формы.

Различают 5 видов компьютерных СППР:

Основу любой из вышеупомянутых систем принятия решений составляет база данных, ее предметная область и пользовательский интерфейс.

Методы систем поддержки принятия решений

К принятию решения используемая СППР «подталкивает» посредством следующих аналитических методов.

Реализация функций многомерного анализа позволяет наблюдать данные в динамике, в различных направлениях и измерениях. Посредством инструментов запросов формулируется обращение к базам данных, которое идентифицируется по содержанию и образцу. Поисковые инструменты наделяют программное обеспечение возможностями оперативного поиска данных по образцам, моделям и определения информационных зависимостей. Звучит все это сложно, но на практике обличено в простую и доступную форму – нужно только правильно и последовательно выполнять команды системы и следовать инструкциям.

что такое система поддержки принятия решений. about 8. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-about 8. картинка что такое система поддержки принятия решений. картинка about 8. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Возможности систем поддержки принятия решений

Современные виды систем принятия решений наделены следующими возможностями:

Внедрение СППР позволяет руководителям среднего звена и топ-менеджерам решать такие задачи, как определение стратегических задач бизнеса, управление проектами, активами, издержками, рисками, производственными мощностями, изменениями, взаимоотношениями с контрагентами.

Автоматизированные СППР в кредитовании

Банки используют системы СППР преимущественно в следующих целях:

Какие СППР подходят для сферы кредитования

В сфере кредитования эффективны те типы систем поддержки принятия решений, которые ориентированы на анализ поведения потребителей и их классификацию по группам со схожими поведенческими признаками. В зависимости от них кредитное учреждение формирует целевые предложения: жилищные кредиты молодым семьям, программы overdraft для вип-клиентов, кредитование пенсионеров, начинающих предпринимателей и т.д.

Внедрение СППР повышает безопасность сделок. Обрабатывая анкету заемщика, менеджеру придется переносить данные из нее в систему. По мере заполнения граф автоматически сформируется ответ на тематический вопрос – относится ли клиент к нужной категории заемщиков. Например, попадает ли он в категорию граждан или компаний, для которых разработаны льготные программы кредитования. Последовательное заполнение граф анкеты «отдает» команду системе на проверку введенных данных. В результате оценка значимости клиента производится не субъективно, а при поддержке авторитетного ПО, что исключает человеческий фактор.

Применение СППР в кредитовании позволяет проверять клиента на предмет совершения мошеннических действий. В той же программе, которая проверяла клиента на соответствие условий для получения займа, можно проверить его чистоту – со своим ли паспортом обратился клиент, активен ли номер телефона, указанное рабочее место и т.д.

В узкоспециализированных кредитных DSS-системах реализованы технологии, позволяющие отлеживать погашение займов: предупреждать о приближении срока платежа посредством СМС, push-уведомлений, звонков из колл-центра, фиксировать просрочку, работать с ней, начислять штрафные санкции и распределять всю эту работу между менеджерами, отвечающими за погашение и взыскание.

FIS Система поддержки принятия решений

Специализированная FIS Система поддержки принятия решений представляет собой комплексный, многофункциональный инструмент, позволяющий максимально сократить риски при выдаче кредитов. С его помощью менеджер может быстро понять риски работы с клиентом и объективно оценить его платежеспособность.

Возможности информационно-аналитической FIS СППР:

Использованные при разработке технологии системы поддержки принятия решений позволяют менеджерам, андеррайтерам, службам безопасности, кредитному комитету работать слаженно и оперативно реагировать на малейшие изменения.

что такое система поддержки принятия решений. about 7. что такое система поддержки принятия решений фото. что такое система поддержки принятия решений-about 7. картинка что такое система поддержки принятия решений. картинка about 7. Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Преимущества FIS СППР

Нижеприведенные достоинства продукта гарантируют высокую степень защиты от внутреннего мошенничества.

FIS DSS – это полный комплекс проверок для определения платежеспособности клиентов. Его внедрение позволит ускорить принятие верного решения, упростить выдачу кредитов и улучшит качество кредитного портфеля. С FIS DSS риски невозвратных кредитов сводятся к нулю.

О компании

Финансовые Информационные Системы – разработчик информационных систем для финансового сектора. Мы знаем, как в кратчайшие сроки установить, настроить и запустить наш продукт, полностью адаптированный и локализованный в соответствии со спецификой бизнеса Банка.

Источник

Системы поддержки принятия решений

СППР возникли в результате слияния управленческих информационных систем и систем управления базами данных.

Система поддержки принятия решений предназначена для поддержки многокритериальных решений в сложной информационной среде. При этом под многокритериальностью понимается тот факт, что результаты принимаемых решений оцениваются не по одному, а по совокупности многих показателей (критериев) рассматриваемых одновременно. Информационная сложность определяется необходимостью учета большого объема данных, обработка которых без помощи современной вычислительной техники практически невыполнима. В этих условиях число возможных решений, как правило, весьма велико, и выбор наилучшего из них «на глаз», без всестороннего анализа может приводить к грубым ошибкам.

Система поддержки решений СППР решает две основные задачи:

В обеих задачах первым и наиболее принципиальным моментом является выбор совокупности критериев, на основе которых в дальнейшем будут оцениваться и сопоставляться возможные решения (будем называть их также альтернативами). Система СППР помогает пользователю сделать такой выбор.

Некоторые из этих методов были разработаны в рамках искусственного интеллекта. Если в основе работы СППР лежат методы искусственного интеллекта, то говорят об интеллектуальной СППР или ИСППР.

Близкие к СППР классы систем — это экспертные системы и автоматизированные системы управления.

Система позволяет решать задачи оперативного и стратегического управления на основе учетных данных о деятельности компании.

Система поддержки принятия решений представляет собой комплекс программных инструментальных средств для анализа данных, моделирования, прогнозирования и принятия управленческих решений, состоящий из собственных разработок корпорации и приобретаемых программных продуктов (Oracle, IBM, Cognos).

Теоретические исследования в области разработки первых систем поддержки принятия решений проводились в технологическом институте Карнеги в конце 50-х начале 60-х годов XX века. Объединить теорию с практикой удалось специалистам из Массачусетского технологического института в 60-х годах. В середине и конце 80-х годов XX столетия стали появляться такие системы, как EIS, GDSS, ODSS. В 1987 году компания Texas Instruments разработала для United Airlines Gate Assignment Display System. Это позволило значительно снизить убытки от полетов и отрегулировать управление различными аэропортами, начиная от Международного аэропорта O’Hare в Чикаго и заканчивая Stapleton в Денвере, штат Колорадо. В 90-х годах сфера возможностей СППР расширялась благодаря внедрению хранилищ данных и инструментов OLAP. Появление новых технологий отчетности сделало СППР незаменимой в менеджменте.

Классификации СППР

По взаимодействию с пользователем выделяют три вида СППР:

По способу поддержки различают:

По сфере использования выделяют:

Общесистемные работают с большими СХД и применяются многими пользователями. Настольные являются небольшими системами и подходят для управления с персонального компьютера одного пользователя.

Архитектура СППР


Функциональные СППР

Являются наиболее простыми с точки зрения архитектуры. Они распространены в организациях, не ставящих перед собой глобальных задач и имеющих невысокий уровень развития информационных технологий. Отличительной особенностью функциональных СППР является то, что анализу подвергаются данные, содержащиеся в файлах операционных систем. Преимуществами подобных СППР являются компактность из-за использования одной платформы и оперативность в связи с отсутствием необходимости перегружать данные в специализированную систему. Из недостатков можно отметить следующие: сужение круга вопросов, решаемых с помощью системы, снижение качества данных из-за отсутствия этапа их очистки, увеличение нагрузки на операционную систему с потенциальной возможностью прекращения ее работы.

СППР, использующие независимые витрины данных

Применяются в крупных организациях, имеющих несколько подразделений, в том числе отделы информационных технологий. Каждая конкретная витрина данных создается для решения определенных задач и ориентирована на отдельный круг пользователей. Это значительно повышает производительность системы. Внедрение подобных структур достаточно просто. Из отрицательных моментов можно отметить то, что данные многократно вводятся в различные витрины, поэтому могут дублироваться. Это повышает затраты на хранение информации и усложняет процедуру унификации. Наполнение витрин данных достаточно сложно в связи с тем, что приходится использовать многочисленные источники. Отсутствует единая картина бизнеса организации, вследствие того что нет окончательной консолидации данных.

СППР на основе двухуровневого хранилища данных

Используется в крупных компаниях, данные которых консолидированы в единую систему. Определения и способы обработки информации в данном случае унифицированы. На обеспечение нормальной работы подобной СППР требуется выделить специализированную команду, которая будет ее обслуживать. Такая архитектура СППР лишена недостатков предыдущей, но в ней нет возможности структурировать данные для отдельных групп пользователей, а также ограничивать доступ к информации. Могут возникнуть трудности с производительностью системы.

СППР на основе трехуровневого хранилища данных

Такие СППР применяют хранилище данных, из которого формируются витрины данных, используемые группами пользователей, решающих сходные задачи. Таким образом, обеспечивается доступ, как к конкретным структурированным данным, так и к единой консолидированной информации. Наполнение витрин данных упрощается ввиду использования проверенных и очищенных данных, находящихся в едином источнике. Имеется корпоративная модель данных. Такие СППР отличает гарантированная производительность. Но существует избыточность данных, которая ведет к росту требований на их хранение. Кроме того, необходимо согласовать подобную архитектуру с множеством областей, имеющих потенциально различные запросы.

Структура СППР

Выделяют четыре основных компонента:

Динамическое моделирование

Особый класс систем стратегического управления и поддержки принятия решений представляют собой системы, позволяющие осуществлять динамическое моделирование процессов. При использовании методов динамического моделирования деятельность компании описывается в виде математической модели, в которой все бизнес-задачи и процессы представляются как система взаимосвязанных вычисляемых показателей.

Решаемые вопросы

СППР позволяет облегчить работу руководителям предприятий и повысить ее эффективность. Они значительно ускоряют решение проблем в бизнесе. СППР способствуют налаживанию межличностного контакта. На их основе можно проводить обучение и подготовку кадров. Данные информационные системы позволяют повысить контроль над деятельностью организации. Наличие четко функционирующей СППР дает большие преимущества по сравнению с конкурирующими структурами. Благодаря предложениям, выдвигаемым СППР, открываются новые подходы к решению повседневных и нестандартных задач.

Использование системы позволяет найти ответы на множество вопросов, возникающих у руководителей компании, например:

У генерального директора:

У руководителя отдела по работе с партнерами:

У руководителя финансового департамента:

У руководителя департамента бюджетного планирования и контроля:

У руководителя департамента закупок:

У руководителя планового отдела (отдела стратегического планирования):

У руководителя отдела сервисного обслуживания:

У руководителя отдела кадров:

У руководителя отдела анализа качества:

Процесс создания системы управленческой отчетности, анализа данных и поддержки принятия решений состоит из следующих этапов :

Итог – продуманные решения опирающиеся на информационный фундамент, адекватные действия, квалифицированное исполнение и как результат успех всего предприятия.

Литература

200 тыс км/с в стекле и

3 млн. км/с в поверхностных слоях металлов, разную скорость в эфире (см. статью «Температура эфира и красные смещения»), разную скорость для разных частот (см. статью «О скорости ЭМ-волн»)

3. В релятивизме возможны манипуляции со временем (замедление), поэтому там нарушаются основополагающие для любой науки принцип причинности и принцип строгой логичности. В релятивизме при скорости света время останавливается (поэтому в нем абсурдно говорить о частоте фотона). В релятивизме возможны такие насилия над разумом, как утверждение о взаимном превышении возраста близнецов, движущихся с субсветовой скоростью, и прочие издевательства над логикой, присущие любой религии.

4. В гравитационном релятивизме (ОТО) вопреки наблюдаемым фактам утверждается об угловом отклонении ЭМ-волн в пустом пространстве под действием гравитации. Однако астрономам известно, что свет от затменных двойных звезд не подвержен такому отклонению, а те «подтверждающие теорию Эйнштейна факты», которые якобы наблюдались А. Эддингтоном в 1919 году в отношении Солнца, являются фальсификацией. Подробнее читайте в FAQ по эфирной физике.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *