что такое сингулярность и горизонт событий
Что такое горизонт событий?
Горизонт событий можно описать простым языком как точку невозврата. Это космическая тюрьма, из которой даже сам свет никогда не сможет выбраться, порог, за которым никакие события не могут повлиять на наблюдателя. Чтобы более детально понять, как концептуализируется горизонт событий, нужно говорить в контексте астрофизики, а именно теории общей относительности и черных дыр, с которыми тесно связано понятие о горизонте событий.
Точка невозврата
Горизонт событий является частью черной дыры, его можно представить как внешнее кольцо, окружающее черную дыру, и если конкретный объект проходит мимо этого внешнего кольца, он больше никогда не сможет вернуться. Похоже, что оно «прилипло» к глазам наблюдателя. Как именно теория относительности Альберта Эйнштейна играет в этом роль? Законы общей относительности гласят, что гравитационные тяготения черных дыр настолько сильны, что ни один объект не может от них ускользнуть.
Как утверждает Эйнштейн, нет ничего, что может путешествовать быстрее скорости света. Как только что-то входит в это кольцо вокруг черной дыры, которую мы называем горизонтом событий, необходимая скорость для побега начинает превышать скорость света. Но если скорость света самая высокая, как можно избежать этого? Никак, поэтому мы называем это точкой невозврата. Чем ближе кто-то или что-то приближается к центру черной дыры, тем быстрее увеличивается скорость, необходимая для побега.
Что такое квазар?
Если мы посмотрим на галактику нашей собственной Солнечной системы, Млечный Путь, то в ее центре есть черная дыра, масса которой равна массе 250 0000 Солнца, а горизонт событий простирается на многие миллионы километров. Важно заметить, что на самом деле никто никогда не видел черную дыру. Тем не менее физики убеждены в их существовании.
Единственное, что мы на самом деле можем видеть, это то, что называется аккреционным диском. Это дискообразный поток различных космических материалов, таких как газ и пыль, который подошел достаточно близко к черной дыре, но достаточно далеко, чтобы не упасть в нее. Эти галоподобные вещества, окружающие черную дыру, также называют квазарами, неологизмом, состоящим из «квазизвездного радиоисточника». Они называются так потому, что квазары были впервые обнаружены как радиоисточники. Они также являются одним из древнейших тел во Вселенной, а также самыми дальними и яркими объектами, которые мы можем видеть.
сингулярность и горизонт событий?
Сингуля́рность (от лат. singularis «единственный, особенный»)
Сингулярность в философии — единичность существа, события, явления.
Математическая сингулярность (особенность) — точка, в которой математическая функция стремится к бесконечности или имеет какие-либо иные регулярности поведения.
Гравитационная сингулярность (сингулярность пространства-времени) — область пространства-времени, через которую невозможно гладко продолжить входящую в неё геодезическую линию.
Космологическая сингулярность — состояние Вселенной в начальный момент Большого взрыва, характеризующееся бесконечной плотностью и температурой вещества.
Технологическая сингулярность — предполагаемый некоторыми исследователями короткий период чрезвычайно быстрого технологического прогресса.
Компьютерная сингулярность — точка во времени, с которой машины начинают совершенствовать сами себя, без помощи кого-либо.
Горизо́нт собы́тий — воображаемая граница в пространстве-времени, разделяющая те события (точки пространства-времени), которые можно соединить с событиями на светоподобной (изотропной) бесконечности светоподобными геодезическими линиями (траекториями световых лучей), и те события, которые так соединить нельзя. Так как обычно светоподобных бесконечностей у данного пространства-времени две: относящаяся к прошлому и будущему, то и горизонтов событий может быть два: горизонт событий прошлого и горизонт событий будущего. Упрощённо можно сказать, что горизонт событий прошлого разделяет события на изменяемые с бесконечности и на не изменяемые; а горизонт событий будущего отделяет события, о которых можно что-либо узнать, хотя бы в бесконечно отдалённой перспективе, от событий, о которых узнать ничего нельзя.
Горизонт событий обычно является трёхмерной гиперповерхностью. Необходимым и достаточным условием его существования является пространственноподобность хотя бы части светоподобной (изотропной) бесконечности. Следует отметить, что горизонт событий — понятие интегральное и нелокальное, так как в его определении участвует светоподобная бесконечность, то есть все бесконечно удалённые области пространства-времени. Поэтому в своей непосредственной окрестности горизонт событий ничем не выделен, что представляет проблему при численных расчётах в общей теории относительности. Для решения этой проблемы предложены некоторые близкие по свойствам к горизонту событий, но локально определяемые понятия: динамический горизонт, ловушечная поверхность и кажущийся горизонт (apparent horizon).
Существует также понятие горизонта событий отдельного наблюдателя. Он разделяет между собой события, которые можно соединить с мировой линией наблюдателя светоподобными (изотропными) геодезическими линиями, направленными соответственно в будущее — горизонт событий прошлого, и в прошлое — горизонт событий будущего, и события, с которыми этого сделать нельзя. Например, постоянно равномерно ускоренный наблюдатель в пространстве Минковского имеет свои горизонты прошлого и будущего (см. горизонт Риндлера).
Горизонт событий и истинная сингулярность
Горизонт событий и истинная сингулярность
Нулевая частота означает, что нет никакого сигнала вообще! Из-под сферы радиуса r g световые сигналы не выходят, гравитационные силы не дают им вырваться во внешнюю окрестность. То есть, действительно, это сфера, где вторая космическая скорость становится равной скорости света. Поэтому из-под сферы радиуса r g невозможно распространение наружу никакой формы материи. Таким образом, эта сфера оказывается барьером, за который внешний наблюдатель не в состоянии заглянуть. Именно поэтому она получила удачное название горизонта событий, а сам объект стали называть черной дырой.
Термин черная дыра подсказал известному американскому физику-теоретику Джону Уилеру (1911–2008) один из студентов на конференции в 1967 году. Но еще ранее, в 1964 году, его использовала Анна Ивинг в докладе на собрании Американской ассоциации содействия науке.
До сих пор мы рассматривали фиксированные точки пространства и наблюдателей, связанных с ними. Теперь давайте проследим за свободно падающим телом. Пусть падение начинается из состояния покоя из удаленной области, где почти нет искривления, откуда мы будем отслеживать его траекторию. В восприятии удаленного наблюдателя история падения будет следующей. Сначала движение не будет вызывать удивления. Скорость будет нарастать медленно, затем все быстрее и быстрее, вполне соответствуя закону всемирного тяготения. Затем, на расстояниях от центра, сравнимых с гравитационным радиусом, нарастание скорости падения станет катастрофическим. Здесь мы тоже не очень удивимся, мы объясним это тем, что из зоны соответствия с гравитацией Ньютона объект попал в зону сильных искривлений. А на расстояниях долей гравитационного радиуса от горизонта событий он, к нашему изумлению, начнет резко тормозить и все медленней приближаться к горизонту событий, а в результате, никогда его не достигнет. Но здесь тоже нечего удивляться, недавно мы установили, что для удаленного наблюдателя все процессы при приближении к горизонту событий замирают, падение тела – не исключение.
Эффект того, что из-под горизонта событий ничего не выходит наружу, мы объяснили наличием чрезвычайно сильного гравитационного воздействия. Этот ответ, конечно, правильный, поскольку ничего, кроме гравитации, не рассматривается. Однако он не конструктивный, так как не позволяет понять механизм тех явлений, о которых мы только что говорили. Нет никакого представления о том, что происходит под горизонтом, и происходит ли вообще что-то. С другой стороны, мы договорились, что в эйнштейновской теории гравитационных сил, как таковых, нет вообще. Есть искривление пространства-времени. Поэтому, давайте, шаг за шагом перейдем к описанию в рамках геометрической теории.
Мы уже убедились, что в СТО использование светового конуса помогает понять многие явления. В ОТО, в искривленном пространстве-времени, имеет больший смысл представлять его не на всей диаграмме, а в окрестности каждой мировой точки. Это будет локальный световой конус, образованный касательными к световым геодезическим в данной точке. Уравнение светового конуса имеет простой вид – интервал приравнивается нулю: ds = 0.
На рис. 8.2 схематически изображены световые конусы для геометрии Шварцшильда. Предполагая, что движения происходят по радиальным направлениям, диаграмма представлена в координатах r и t. Эти координаты для удаленного наблюдателя в его собственной системе отсчета определяют истинные расстояние и время. Поэтому картина физических явлений, представленная с помощью r и t, – это как раз та картина, которую будет воспринимать удаленный наблюдатель. На рисунке видно, что на значительном удалении «лепестки» конуса расположены под углом 45°, то есть так, как в плоском пространстве-времени. Вертикальные линии соответствуют тем самым зафиксированным (неподвижным) наблюдателям, о которых мы говорили недавно. По мере приближения к черной дыре конус становится все уже, на горизонте он «слипается» и превращается в одну вертикальную линию. Вертикальная линия для удаленного наблюдателя означает, что свет «остановился», его скорость стала «нулевой». Это и означает, что на горизонте все явления замораживаются. Расчет нулевой геодезической показывает, что для удаленного наблюдателя свет никогда не достигнет горизонта.
Рис. 8.2. Пространство-время геометрии Шварцшильда в координатах удаленного наблюдателя
Частично такое поведение световых конусов связано с эффектом замедления времени при приближении к гравитирующему центру. Однако, полностью его форма, как мы уже говорили, определяется условием ds = 0, как раз оно определяет «видимую» скорость света для удаленного наблюдателя: v c = c (1 – r g/r). На значительном удалении от центра скорость близка к c, по мере приближения к центру она уменьшается, а на горизонте, действительно, обращается в нуль. Это прямо связано с формой световых конусов на рис. 8.2. Скорость материальных частиц всегда меньше скорости света (мировая линия физической частицы, находится между створками светового конуса), поэтому их «видимые» предельные скорости тоже уменьшаются при продвижении к центру, и они тоже никогда не достигнут горизонта в координатах r и t. Этот вывод еще раз подтверждает наше описание свободного падения к горизонту с точки зрения удаленного наблюдателя.
Далее продолжим наш мысленный эксперимент, теперь «сожмем» все вещество сферического объекта не только до гравитационного радиуса, а вообще, до «точки» r = 0. То есть все пространство-время будем рассматривать как вакуумное. Формально мы имеем право это сделать, поскольку решение Шварцшильда как раз вакуумное. Обратимся к выражению для метрики. Мы уже отметили, что на горизонте коэффициент g 00 при c 2 dt 2 обращается в нуль, а коэффициент g 00 при dr 2 становится бесконечным. Мало того, есть особенность и в «точке» r = 0: здесь, наоборот, gстановится равным «минус бесконечности», g 11– равным нулю. Вспомним, что для «обычного» тела, о котором речь шла в начале параграфа, не возникло никаких особенностей. Далее мы обсудим смысл как особенности на горизонте, так и особенности в центре.
А что будет под горизонтом? Там ситуация изменилась: в выражении для интервала мы должны учесть r g, тогда коэффициент g 00 при c 2 dt 2 становится отрицательным, а коэффициент g 11 при dr 2 становится, наоборот, – положительным. А это, как только что мы
обсудили, означает, что под горизонтом координата t становится пространственной, а координата r – временной! Теперь, учитывая этот факт, построим световые конусы под горизонтом. Поскольку на диаграмме координаты r и t поменяли смысл, световые конусы как бы лягут на бок, с внутренней стороны на горизонте их створ равен 180°, затем приближаясь к центру r = 0, створ уменьшается. Как всегда, мировая линия реальной физической частицы должна быть внутри створа светового конуса. Наконец, при r = 0 лепестки конусов окончательно «слипаются», как показано на рис. 8.2. Расположение и форма световых конусов под горизонтом говорят о двух вещах. Первое, действительно, ни лучи света, ни какая материальная частица не могут покинуть горизонт и область под ним; второе, все частицы и свет, оказавшись под горизонтом, неминуемо достигнут начала координат при r = 0. Действительно, створ конуса всегда направлен к линии r = 0.
Мы видим, что под горизонтом нет препятствий для движения частиц, хотя и выглядит это несколько необычно. С другой стороны, сигналы извне не могут преодолеть горизонт. Происходит разрыв мировых линий световых лучей и падающих частиц. Самое время обсудить особенность на горизонте. Попытаемся понять, что на горизонте и в его окрестности происходит в реальности.
Придется вернуться к истокам ОТО и вспомнить, что основной характеристикой пространства-времени является его искривление (кривизна), которое определяется тензором кривизны Римана. Но вычисление компонент тензора Римана на горизонте и в его окрестности ничего необычного не обнаруживает. До горизонта, на горизонте и под ним кривизна не испытывает никаких разрывов, ведет себя вполне плавно, постепенно увеличиваясь по мере приближения к центру. Дело в том, что координаты удаленного наблюдателя (а это координаты плоского пространства-времени), в которых и записано решение Шварцшильда, не вполне годятся для описания явлений в окрестности горизонта. Это значит, что нужно найти координаты, которые не имели бы этого дефекта.
Вспомним, что истинное время каждого наблюдателя для него самого всегда имеет одно и то же течение, в том числе и совсем близко к горизонту. А возможно, и на горизонте, почему нет? Поэтому в искомых координатах можно использовать собственное время свободно падающих (сопутствующих) наблюдателей как новую временную координату. Такие координаты для решения Шварцшильда, свободные от дефектов на горизонте, предложил в 1938 году бельгийский астроном и математик Жорж Леметр (1894–1966). В его сопутствующей системе отсчета мировые линии частиц и световых лучей перестают испытывать разрыв на горизонте – они его свободно пересекают. Диаграмма в координатах Леметра обсуждается в Дополнении 5.
Что же испытают наблюдатели, минуя горизонт? Все зависит от кривизны этого горизонта. Если черная дыра огромная, то локально горизонт довольно плоский, и наблюдатель никак не отреагирует на его пересечение. Если уменьшать черную дыру, то в определенный момент наблюдатель начнет ощущать действие приливных сил. Его начнет «растягивать» по радиусу и «обжимать» с боков. Но эти явления могут начаться и до достижения горизонта, они с ним не связаны. Ключевым моментом является следующее. Оказавшись под горизонтом, наблюдатель имеет возможность получить сигнал из внешнего мира, но не имеет возможности послать сигнал наружу.
Наконец, обсудим особенность в «центре» r = 0. Пока мы получили ее, проводя мысленный эксперимент. А может ли такая особенность образоваться в реальности? Снова вернемся к примеру с «обычным» телом, который обсуждался в начале этой главы. Такой объект описывается внутренним решением, которое статично, не имеет особенностей и «сшивается» с внешним решением Шварцшильда. Внутреннее решение получено с учетом уравнения состояния вещества тела. В этом случае уравнение состояния определяет такое давление, что оно противостоит гравитационному сжатию. Именно поэтому объект статичен. Всегда ли это возможно? Забегая вперед, где эта проблема обсуждается, скажем: нет, не всегда. Если масса тела равна или превышает пять солнечных масс, то не существует такого состояния вещества, чтобы его давление могло противостоять гравитационному сжатию. Что произойдет, если тело такой массы образуется, как остаток погибшей звезды? Ясно – тело начнет сжиматься. Давайте проследим за этим сжатием, только не издалека (мы убедились, что удаленный наблюдатель для этого не годится), а с помощью наблюдателя, посаженного на поверхность этого тела. Сначала наблюдатель вместе с остатком звезды достигнет горизонта. До этого он имеет принципиальную возможность спастись на сверхмощной ракете, покинув злополучный коллапсар. Но сравнявшись с горизонтом, он неминуемо вместе с остатком звезды «свалится» в центр. Фатальное слово «неминуемо» вполне научно обосновано, расположение световых конусов под горизонтом говорит об этом однозначно.
Итак, действительно, все может свалиться в «центр» r = 0. Но можно ли сказать, что в результате образуется особенность, именно, в «точке». Строго говоря, нет. Дело в том, что при таком сжатии плотность и давление вещества достигают величин, для которых известные законы физики уже не работают. Скорее всего, пространство и время перестают быть классическими, поэтому в непосредственной близости от центра, куда все свалилось, уже нельзя построить тех самых световых конусов. Так что разумнее говорить о сверхплотном образовании в центре, физика которого пока не изучена.
С этими оговорками обсудим, тем не менее, идеализированную точечную особенность. Снова, как в случае горизонта, посчитаем компоненты тензора кривизны. Но теперь, в отличие от горизонта, получим, что кривизна обращается в бесконечность. А это означает, что такая особенность не может быть «ликвидирована» с помощью перехода к другим координатам, как особенность на горизонте. Таким образом, для r = 0 имеем особенность, которую часто называют истинной сингулярностью. Далее, поскольку получается, что вся масса объекта сосредоточена в нулевом объеме, то и плотность вещества также обращается в бесконечность. Отметим, что прямая r = 0 на диаграмме рисунка 8.2 пересекает «лепестки» близких световых конусов. То есть по прямой r = 0 никакие сигналы не распространяются и частицы не движутся. Исходя из этого, на умозрительном уровне (без необходимой научной строгости) сингулярность r = 0 можно интерпретировать, как часть пространства с нулевым объемом, бесконечной плотностью и кривизной, на котором «заканчивается» течение времени.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
Хронология важнейших событий, упомянутых в книге
Хронология важнейших событий, упомянутых в книге VI в. до н.?э. Фалес, основоположник греческой философии и науки, выдвинул идею «первоэлемента» в основе всех явлений природы.V в. до н.?э. Пифагор установил связь между длиной струны и высотой тона.IV в. до н. э. Демокрит
12. Горизонты событий
12. Горизонты событий Однажды темным ветреным вечером 14 февраля 1974 года я отвезла Стивена в Оксфорд на конференцию в Лабораторию Резерфорда[109] на базе Научно-исследовательского центра по атомной энергии в Харуэлле. Мы остановились в Эбингтоне в Козенерс-хаус – старинном
Горизонт событий и искривление времени
Горизонт событий и искривление времени Когда вы слышите «черная дыра», то, скорее всего, думаете не об искривлении пространства, а о том, как черная дыра засасывает объекты (см. рис. 5.3). Рис. 5.3. Сигналы, которые я посылаю после пересечения горизонта событий, не могут
БХЛ-сингулярность
БХЛ-сингулярность Во времена Уилера (1960-е) мы думали, что сингулярность черной дыры похожа на сужение пространства в точку, где материя сгущается, пока не становится бесконечно плотной и не исчезает. И я, вплоть до этого момента, изображал в книге сингулярность
Через горизонт событий
Через горизонт событий В фильме, когда «Рейнджер-2», пилотируемый Купером, и посадочный модуль 1, которым управляет ТАРС, отделяются от «Эндюранс», они опускаются по спирали к горизонту событий Гаргантюа и проходят сквозь него. Что говорят законы теории
Суть чёрных дыр: сингулярность, горизонт событий, спагеттификация
О чёрных дырах ходит множество самых невообразимых слухов, легенд и теорий. Неудивительно: ведь заглянуть в них напрямую и проверить свои догадки мы не можем — запрещают законы природы. Учёные строят такие теории, что впору удивляться даже фантастам: здесь и области сингулярности, в которых физика перестаёт работать, и порталы в другие измерения… А ведь начиналось всё совершенно обыденно: три века назад естествоиспытатели решили наконец разобраться, что же такое земное притяжение.
Как известно, первую физико-математическую теорию гравитации сформулировал в 1687 году Исаак Ньютон. Введённый им закон всемирного тяготения описывал, как тела взаимодействуют друг с другом, но не объяснял природу этого взаимодействия. Сам учёный признавал ограниченность своей теории, написав буквально следующее: «Причину же этих свойств силы тяготения я до сих пор не мог вывести из явлений; гипотез же я не измышляю».
Тем не менее из закона Ньютона при желании можно вывести необычные следствия. Например, весьма экзотическую гипотезу высказал в 1784 году английский естествоиспытатель и теолог Джон Мичелл. В письме к Королевскому обществу, которое в то время было влиятельнейшей научной организацией мира, он приводил расчёт «тёмного солнца» — звезды с силой притяжения, не позволяющей её свету вырваться вовне. Оказалось, что для превращения в подобный объект наше Солнце должно быть в пятьсот раз больше. Далее Мичелл предположил: поскольку массивных звёзд в космосе достаточно, среди них должны быть и «тёмные», но, по понятным причинам, увидеть их мы не можем. Позднее французский математик Пьер-Симон Лаплас популяризировал идею Мичелла, включив её в свой фундаментальный труд «Изложение системы мира» (Exposition du Système du Monde, 1796).
Окрестности сверхмассивной чёрной дыры, какие обычно располагаются в сердце галактик (в представлении художника, ESO, CC BY 4.0)
Хотя у ньютоновской теории гравитации были оппоненты, со временем она стала общепринятой, поскольку подтверждалась наблюдениями и точнейшими измерениями. Доработать и расширить её потребовалось в начале ХХ века, когда выяснилось, что она не работает, если тело движется с релятивистскими (то есть сопоставимыми со скоростью света) скоростями. К концу 1915 года Альберт Эйнштейн сформулировал новую теорию гравитации, получившую название общей теории относительности (ОТО). Он предположил, что действие гравитации не связано ни с какими неведомыми силами или частицами, а обусловлено геометрическими свойствами самогó пространственно-временного континуума: любая масса искривляет его, создавая вокруг себя своего рода «воронку», а движение тел относительно друг друга обусловлено только формой и глубиной этих «воронок».
Концепция Эйнштейна казалась настолько революционной, что научный мир не сразу её принял. Одним из доказательств в пользу ОТО могло бы стать обнаружение «замороженных звёзд» — сферических сверхмассивных областей пространства, которые при помощи уравнений Эйнштейна описал Карл Шварцшильд. В отличие от идеи Мичелла, в новой модели до нуля замедлялась не скорость света, но само течение времени. Шварцшильд ввёл понятие гравитационного радиуса, определяющего размер, необходимый для «замерзания» звезды.
Радиус Шварцшильда можно рассчитать для любого тела: например, для Солнца он составляет 3 км, для Земли — около 9 мм. Если б существовала физическая возможность сжать наше светило или планету до указанных размеров без мгновенного взрыва с переходом материи в энергию, то они превратились бы в «замороженные», а течение времени на их поверхности сразу остановилось бы. С другой стороны, если масса исходного объекта значительна, то незачем сжимать его до предельно малых размеров: скажем, «замороженная звезда» массой в миллиард солнечных будет иметь плотность воды.
Небесные дыры
Другие физики, среди которых были Фриц Цвикки и Лев Ландау, в серии работ показали, что нейтронные звёзды образуются в результате взрыва сверхновых, но не всегда: самые массивные из них переходят в иное состояние.
Но какое? В 1939 году Роберт Оппенгеймер (один из будущих создателей американской атомной бомбы) и Хартланд Снайдер на упрощённой математической модели показали, что звезда при коллапсе стягивается к радиусу Шварцшильда и даже преодолевает его! Вывод выглядел столь фантастическим, что учёные в то время не осмелились сделать следующий шаг и заявить: «замороженные звёзды» действительно существуют.
Чёрная дыра звёздной массы в представлении художника
Дальнейшие исследования и расчёты тем не менее показали: ничего невероятного в этом нет. Массивные звёзды во всех случаях превращаются в «замороженные», сила тяготения вблизи которых стремится к бесконечности, а время останавливается. И, главное, таких объектов во Вселенной должно быть очень много, ведь её эволюция началась не вчера. Теперь астрономам предстояло подтвердить или опровергнуть теоретические выкладки.
Постепенно определилась и терминология. Установлено, что первым в начале 1960-х годов «замороженную звезду» стал называть «чёрной дырой» американец Роберт Дик, в своих лекциях сравнивавший этот гипотетический объект с легендарной «Калькуттской чёрной дырой» — маленькой тюремной камерой форта Уильям, где в июне 1756 года погибли десятки пленных англичан.
Новый термин понравился прежде всего журналистам: с 1963 года он стал постоянно появляться на страницах журналов Life и Science News. В студенческой среде новое название прижилось после того, как в январе 1964 года Энн Юинг выступила на конференции Американской ассоциации содействия науке с докладом «Чёрные дыры в космосе». Несмотря на это, авторство термина ошибочно приписывают американскому физику Джону Уилеру, который употреблял его в своих лекциях начиная с декабря 1967 года.
Долгое время оставалось популярным предположение, что через чёрные дыры можно проникнуть в иные вселенные или эпохи
Разумеется, чёрными дырами заинтересовались и фантасты. Необычный космический объект, гравитация которого столь велика, что останавливает время, будоражил воображение. В романе «Шпага Рианнона» (1949), ныне считающемся классикой, знаменитая Ли Брэкетт описала «пузырь тьмы», через который персонаж отправляется в прошлое Марса:
Этот пузырь с пульсирующей чернотой — до чего он похож на черноту тех густо-чёрных пятен, находящихся далеко-далеко на краю Галактики, которые некоторые учёные считают отверстиями в саму бесконечность, окнами в бесконечное «вне» нашей Вселенной.
С тех пор чёрные дыры стали всё чаще появляться на страницах фантастических книг и журналов. Их рассматривали прежде всего как угрозу звездолётам будущего или как «место заключения» невероятно древних и могущественных существ. Впрочем, начиная с первой половины 1970-х годов чёрные дыры в фантастике стали всё больше походить на те описания, что давали физики.
Внутри дыры
Учёные довольно быстро определились со структурой чёрных дыр, которую удалось описать с помощью ОТО. В рамках этой теории чёрная дыра описывается не как вещество или энергия, а как мощное гравитационное поле, сконцентрированное в чудовищно искривлённой области пространственно-временного континуума. Её внешняя граница представляет собой замкнутую поверхность, которая получила название «горизонт событий»; если перед коллапсом звезда не вращалась, то радиус этой границы совпадает с радиусом Шварцшильда.
Снаружи чёрная дыра ведёт себя как обычный космический объект, только очень и очень тяжёлый. Если мы пошлём в её сторону зонд, что будет передавать световые сигналы через равные промежутки времени, то при его приближении к «горизонту событий» заметим, что интервалы между сигналами увеличиваются, поскольку время на борту замедляется. Длина световой волны, испускаемой зондом, будет стремительно расти, и вскоре сигнал превратится в радиоволны, а потом — в низкочастотные электромагнитные колебания, зафиксировать которые почти невозможно.
Как только зонд пересечёт «горизонт», информация с борта поступать перестанет. При этом аппарат повлияет на чёрную дыру, передав ей свою массу, электрический заряд и момент вращения. Внутри дыры зонд начнёт падать к её центру — сингулярности, которая для неподвижной дыры представляет собой точку, а для вращающейся — кольцо; поперечник сингулярности не может превышать длину Планка-Уилера, равную 1,62×10−33 см. С точки зрения внешнего наблюдателя, зонд будет падать в центр дыры вечно, однако в действительности его разорвут растущие приливные силы. Этот процесс называют «спагеттификацией»: объект резко растягивается по вертикали и сжимается по горизонтали.
Чёрная дыра поглощает звезду (в представлении художника, NASA/JPL-Caltech)
Описанная модель просуществовала недолго. В 1965 году американец Эзра Ньюман, используя ОТО в модификации новозеландца Роя Керра, описал вариант вращающейся чёрной дыры с мощным электрическим зарядом. Оказывается, в таком случае дыра будет окружена эргосферой, которую можно покинуть, не свалившись в сингулярность. Более того, из дальнейших расчётов следовало, что сингулярность такой дыры будет работать как «червоточина» — тоннель в другие вселенные или даже другие эпохи. Разумеется, столь богатой идеей почти сразу воспользовались фантасты: например, способ транспортировки через чёрные дыры описан в романе Джо Холдемана «Бесконечная война» (1974).
Интересные последствия имела и попытка применить к чёрным дырам квантовую механику. Её предпринял в 1975 году знаменитый физик Стивен Хокинг. Флуктуации вакуума непрерывно порождают пары виртуальных частиц (частицу и античастицу), которые при обычных условиях тут же «погибают». Однако если такая пара материализуется на «горизонте событий», то одна частица провалится к сингулярности, а другая при благоприятных условиях вылетит наружу. В результате дыра превращается в источник излучения, которое назвали «испарением Хокинга». Из его выкладок также следовало то, что могут существовать короткоживущие дыры микронных размеров: во время испарения они должны выделять колоссальное количество энергии.
Идеи Хокинга, которые он активно продвигал в своих научно-популярных работах, быстро перекочевали и в фантастику: скажем, микроскопические дыры используют для производства энергии персонажи романа Джона Варли «Горячая линия Офиути» (1977).
Моделирование процесса создания микроскопической чёрной дыры (Lucas Taylor / CERN)
Увидеть тьму
За десятилетия учёные описали множество теоретических моделей чёрных дыр, и определить, какие из них верны, можно только с помощью астрономических наблюдений. Поскольку увидеть дыры невозможно, приходится прибегать к косвенным методам.
Например, если рядом с чёрной дырой находится большая звезда, то дыра втягивает в себя вещество этой звезды (процесс называется аккрецией). При этом вокруг дыры за счёт вращательного момента формируется аккреционный диск, газ в котором разгоняется до релятивистских скоростей и нагревается так, что начинает излучать в рентгеновском диапазоне. Соответственно, диск и саму чёрную дыру можно обнаружить рентгеновским телескопом. К сожалению, этим методом трудно отличить дыры от нейтронных звёзд. Необходимо разглядеть важное отличие: газ, падающий на твёрдую поверхность, продолжает интенсивно излучать, а приближающийся к «горизонту событий» быстро меркнет.
Чёрная дыра с аккреционным диском — мощный источник рентгеновского излучения (в представлении художника, NASA/JPL)
Рентгеновский источник Cygnus X-1 (NASA)
Именно такой эффект был обнаружен при наблюдении за рентгеновским источником Лебедь X-1 (Cygnus X-1), открытым в 1964 году. Он находится в 6070 световых годах от нас и представляет собой двойную систему, состоящую из голубого сверхгиганта HDE 226868 и чёрной дыры с массой 14,8 солнечных и радиусом «горизонта событий» около 300 км. Материя в аккреционном диске нагревается до миллионов градусов, генерируя рентгеновские лучи.
При этом из диска бьют две перпендикулярные струи, уносящие часть набегающего материала в межзвёздное пространство. Интересно, что в декабре 1974 года двойной объект Лебедь X-1 стал предметом дружественного пари между физиками Стивеном Хокингом и Кипом Торном: Хокинг сделал ставку на то, что чёрной дыры там нет. Он признал проигрыш в 1990 году, когда многочисленные наблюдения подтвердили точку зрения его коллеги. Торн в награду получил годовую подписку на журнал Penthouse.
Рентгеновский источник Cygnus X-1 в представлении художника (NASA)
Модели показывают, что чёрные дыры могут сталкиваться и сливаться друг с другом. В результате образуются объекты массой в миллионы и миллиарды солнечных. Сегодня астрофизики полагают, что подобные тела находятся в центрах большинства галактик, включая Млечный Путь. Наша центральная сверхмассивная чёрная дыра Sagittarius A* расположена в созвездии Стрельца, на расстоянии около 26 тысяч световых лет. Странное название объекта — это шутка учёных: обнаруживший чёрную дыру астроном Роберт Браун заявил, что открытие его «очень взбудоражило», а звёздочками в квантовой физике обозначают «возбуждённые состояния» атомов.
Много шума наделало апрельское сообщение группы учёных из проекта Event Horizon Telescope, объединяющего мощности восьми радиотелескопов в разных районах земного шара. Они заявили, что впервые в истории получили прямое изображение тени сверхмассивной чёрной дыры. Эта дыра находится в центре галактики М 87 (Messier 87), расположенной в созвездии Девы на расстоянии 53,5 миллионов световых лет от нас. На то, чтобы обработать астрономические данные и подготовить на их основе исторический снимок, ушло два года. Это достижение подтвердило: модель чёрных дыр, построенная на основе ОТО, ближе всего к действительности. Увы, но оно же поставило крест на гипотезе о «червоточинах» — попасть через чёрные дыры в другие пространства или эпохи невозможно в принципе.
Исторический снимок: тень чёрной дыры в центре галактики М 87, созвездие Девы (ESO [CC BY 4.0])
Впрочем, непосредственное изучение чёрных дыр ещё только начинается. И никто сегодня не может сказать, куда заведёт науку желание заглянуть в «пузырь тьмы»…