что такое предельный угол полного внутреннего отражения
Полное отражение
Полное отражение
Если свет падает из оптически более плотной среды в оптически менее плотную, то при определенном для каждой среды угле падения, преломленный луч исчезает. Наблюдается только отражение. Это явление называется полным внутренним отражением.
Угол падения, которому соответствует угол преломления 90°, называют предельным углом полного внутреннего отражения (α0).
Из закона преломления следует, что при переходе света из какой-либо среды в вакуум (или воздух)
При переходе между двумя любыми средами:
Явление полного отражения света используется в призмах, в волоконной оптике (световодах), в водолазном деле, в ювелирной промышленности.
Световод — стеклянное волокно цилиндрической формы, покрытое оболочкой из прозрачного материала с показателем преломления меньше чем у волокна. За счет многократного полного отражения свет может быть направлен по изогнутому пути.
Поворотные и оборачивающие призмы применяют в перископах, биноклях, киноаппаратах, а также часто вместо зеркал.
Если мы пытаемся из-под воды взглянуть на то, что находится в воздухе, то при определенном значении угла, под которым мы смотрим, можно увидеть отраженное от поверхности воды дно. Это важно учитывать для того, чтобы не потерять ориентировку.
В ювелирном деле огранка камней подбирается так, чтобы на каждой грани наблюдалось полное отражение. Этим и объясняется «игра камней».
Полным внутренним отражением объясняется и явление миража.
Полное внутреннее отражение света: описание, условия и законы
Распространение электромагнитных волн в различных средах подчиняется законам отражения и преломления. Из этих законов при определенных условиях следует один интересный эффект, который в физике получил название полного внутреннего отражения света. Подробнее рассмотрим, что этот эффект собой представляет.
Отражение и преломление
Перед тем как переходить непосредственно к рассмотрению внутреннего полного отражения света, необходимо дать пояснение процессам отражения и преломления.
Вам будет интересно: Аномалии воды и их характеристика
Под отражением понимают изменение направления движения светового луча в той же среде, когда он встречает какую-либо поверхность раздела. Например, если направить световой луч от лазерной указки на зеркало, то можно наблюдать описанный эффект.
Преломление и отражение связаны друг с другом. Они практически всегда присутствуют вместе: часть энергии луча отражается, а другая часть преломляется.
Понятие о показателе преломления
Показатель преломления является важной величиной для математического описания рассматриваемых явлений. Показатель преломления конкретной среды определяется так:
Скорость света в веществе коррелирует с плотностью последнего. Чем плотнее среда, тем тяжелее свету в ней двигаться. Например, для воздуха n = 1,00029, то есть почти как для вакуума, для воды же n = 1,333.
Отражения, преломление и их законы
Основные законы преломления света и отражения могут быть записаны в следующем виде:
Анализ формулы для 2-го закона преломления
Чтобы понять, когда будет наступать внутреннее полное отражение света, следует рассмотреть закон преломления, который также носит название закона Снелла (голландский ученый, который его открыл в начале XVII века). Запишем еще раз формулу:
Видно, что произведение синуса угла луча к нормали на показатель преломления той среды, в которой этот луч распространяется, является величиной неизменной. Это означает, что если n1>n2, то для выполнения равенства необходимо, чтобы sin(θ1) sin(θ3)).
Внутреннее полное отражение света
Теперь перейдем к самому интересному. Рассмотрим ситуацию, когда световой пучок переходит из более плотной среды, то есть n1>n2. В этом случае θ1 Понравилась статья? Поделись с друзьями:
Что такое предельный угол полного внутреннего отражения
При переходе света из оптически более плотной среды в оптически менее плотную среду при увеличении угла падения направление преломленного луча приближается к границе раздела двух сред (рис. 6.14). Когда угол падения превосходит некоторое предельное значение, падающий на границу раздела свет полностью отражается. Это явление называется полным внутренним отражением. Угол падения, при котором угол преломления равен
, называется предельным углом. Согласно (6.1) при переходе луча из оптически более плотной среды с показателем преломления
в оптически менее плотную среду с показателем преломления
(
) величина предельного угла определится из следующего соотношения:
Луч, соответствующий случаю, когда преломленный луч – скользящий, выделен на рис. 6.15 желтым цветом. При углах падения, больших предельного (лучи красного цвета), преломленный световой поток отсутствует, вся переносимая этим лучом энергия остается в отраженном потоке. Для красного луча имеет место явление полного внутреннего отражения.
На рис. 6.16–6.18 рассмотрено преломление светового луча на границе раздела алмаз-воздух. Если угол падения меньше предельного, мы имеем и отраженный, и преломленный луч (рис. 6.16). Предельный угол равен , в этом случае преломленный луч скользит по границе раздела (рис. 6.17). Если угол падения больше критического, преломленный луч отсутствует (рис. 6.18).
Во многих приборах, например, в биноклях, полное внутреннее отражение используется при отражении света в призмах. Преимущество состоит в том, что при этом отражается почти 100 % света, и изображение получается более ярким.
Если нырнуть под воду и посмотреть вверх, то можно пронаблюдать явление полного внутреннего отражения: на зеркальной поверхности воды будет видно круглое отверстие, выделяющее область углов падения, меньших предельного. За пределами этого круга ныряльщик увидит отражение берега и дна водоема.
Явление полного внутреннего отражения широко используется в технике. На этом явлении основано применение гибких оптических волокон, по которым проходят световые лучи, многократно отражаясь от стенок.
Что такое предельный угол полного внутреннего отражения
Наблюдение преломления света.
На границе двух сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, т. е. происходит отражение света. Если вторая среда прозрачна, то свет частично может пройти через границу сред, также меняя при этом, как правило, направление распространения. Это явление называется преломлением света.
Вследствие преломления наблюдается кажущееся изменение формы предметов, их расположения и размеров. В этом нас могут убедить простые наблюдения. Положим на дно пустого непрозрачного стакана монету или другой небольшой предмет. Подвинем стакан так, чтобы центр монеты, край стакана и глаз находились на одной прямой. Не меняя положения головы, будем наливать в стакан воду. По мере повышения уровня воды дно стакана с монетой как бы приподнимается. Монета, которая ранее была видна лишь частично, теперь будет видна полностью. Установим наклонно карандаш в сосуде с водой.
Если посмотреть на сосуд сбоку, то можно заметить, что часть карандаша, находящаяся в воде, кажется сдвинутой в сторону (рис. 96).
Эти явления объясняются изменением направления лучей на границе двух сред — преломлением света.
Закон преломления света определяет взаимное расположение падающего луча АВ (рис. 97), преломленного DB и перпендикуляра СЕ к поверхности раздела сред, восставленного в точке падения. Угол а называется углом падения, а угол β— углом преломления.
Падающий, отраженный и преломленный лучи нетрудно наблюдать, сделав узкий световой пучок видимым. Ход такого пучка в воздухе можно проследить, если пустить в воздух немного дыма или же поставить экран под небольшим углом к лучу. Преломленный пучок также виден в подкрашенной флюоресцеином воде аквариума (рис. 98).
Вывод закона преломления света. Закон преломления света был установлен опытным путем в XVII веке. Мы его выведем с помощью принципа Гюйгенса.
Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Обозначим скорость волны в первой среде через v1, а во второй — через v2.
Пусть на плоскую границу раздела двух сред (например, из воздуха в воду) падает плоская световая волна (рис. 99). Волновая поверхность АС перпендикулярна лучам А1А и В1В. Поверхности MN сначала достигнет луч А1А. Луч В1В достигнет поверхности спустя время
Поэтому в момент, когда вторичная волна в точке В только начнет возбуждаться, волна от точки А уже имеет вид полусферы радиусом
Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред. В данном случае это плоскость BD. Она является огибающей вторичных волн.
Угол падения α луча равен углу САВ в треугольнике АВС (стороны одного из этих углов перпендикулярны сторонам другого). Следовательно,
Угол преломления β равен углу ABD треугольника ABD. Поэтому
Разделив почленно (5.2) на (5.3), получим
где n — постоянная величина, не зависящая от угла падения.
Из построения (рис. 99) видно, что падающий луч, луч преломленный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости. Данное утверждение совместно с уравнением (5.4), согласно которому отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред, представляет собой закон преломления света.
Убедиться в справедливости закона преломления можно экспериментально, измеряя углы падения и преломления и вычисляя отношение их синусов при различных углах падения. Это отношение остается неизменным.
Показатель преломления. Постоянная величина, входящая в закон преломления света, называется относительным показателем преломления или показателем преломления второй среды относительно первой.
Из принципа Гюйгенса не только следует закон преломления, но с помощью этого принципа раскрывается физический смысл показателя преломления. Он равен отношению скоростей света в средах, на границе между которыми происходит преломление:
Если угол преломления β меньше угла падения а, то согласно (5.4) скорость света во второй среде меньше, чем в первой.
Показатель преломления среды относительно вакуума называют абсолютным показателем преломления этой среды. Он равен отношению синуса угла падения к синусу угла преломления при переходе светового луча из вакуума в данную среду.
Пользуясь формулой (5.5), можно выразить относительный показатель преломления через абсолютные показатели преломления n1 и n2 первой и второй сред.
Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой.
Абсолютный показатель преломления определяется скоростью распространения света в данной среде, которая зависит от физического состояния среды, т. е. от температуры вещества, его плотности, наличия в нем упругих напряжений. Показатель преломления зависит также и от характеристик самого света. Для красного света он меньше, чем для зеленого, а для зеленого — меньше, чем для фиолетового.
Поэтому в таблицах значений показателей преломления для разных веществ обычно указывается, для какого света приведено данное значение n и в каком состоянии находится среда. Если таких указаний нет, то это означает, что зависимостью от указанных факторов можно пренебречь.
В большинстве случаев приходится рассматривать переход света через границу воздух — твердое тело или воздух — жидкость, а не через границу вакуум — среда. Однако абсолютный показатель преломления n2 твердого или жидкого вещества отличается от показателя преломления того же вещества относительно воздуха незначительно. Так, абсолютный показатель преломления воздуха при нормальных условиях для желтого света равен приблизительно n1≈1,000292. Следовательно,
Значения показателей преломления для некоторых веществ относительно воздуха приведены в таблице 2 (данные относятся к желтому свету).
Ход лучей в треугольной призме.
Закон преломления света позволяет рассчитать ход лучей в различных оптических устройствах, например в треугольной призме, изготовленной из стекла или других прозрачных материалов.
На рисунке 100 изображено сечение стеклянной призмы плоскостью, перпендикулярной ее боковым ребрам. Луч в призме отклоняется к основанию, преломляясь на гранях ОА и ОВ. Угол φ между этими гранями называют преломляющим углом призмы. Угол 0 отклонения луча зависит от преломляющего угла призмы ф, показателя преломления n материала призмы и угла падения а. Он может быть вычислен с помощью закона преломления (5.4).
ПОЛНОЕ ОТРАЖЕНИЕ
При прохождении света из оптически менее плотной среды в более плотную, например из воздуха в стекло или воду, v1 и v2 согласно закону преломления (5.4) показатель преломления 1. Поэтому а>β (рис. 101, а):
преломленный луч приближается к перпендикуляру к границе раздела сред. Если направить луч света в обратном направлении — из оптически более плотной среды в оптически менее плотную вдоль бывшего преломленного луча (рис. 101, б), то закон преломления запишется так:
Преломленный луч по выходе из оптически более плотной среды пойдет по линии бывшего падающего луча, поэтому а ао. При падении света на границу двух сред световой луч, как об этом уже упоминалось, частично преломляется, а частично отражается от нее. При а>a0 преломление света невозможно. Значит, луч должен полностью отразиться. Это явление и называется полным отражением света.
Для наблюдения полного отражения можно использовать стеклянный полуцилиндр с матовой задней поверхностью. Полуцилиндр закрепляют на диске так, чтобы середина плоской поверхности полуцилиндра совпадала с центром диска (рис. 103). Узкий пучок света от осветителя направляют снизу на боковую поверхность полуцилиндра перпендикулярно его поверхности. На этой поверхности луч не преломляется. На плоской поверхности луч частично преломляется и частично отражается. Отражение происходит в соответствии с законом отражения, а преломление — в соответствии с законом преломления (5.4).
Если увеличивать угол падения, то можно заметить, что яркость (и следовательно, энергия) отраженного пучка растет, в то время как яркость (энергия) преломленного пучка падает. Особенно быстро убывает энергия преломленного пучка, когда угол преломления приближается к 90°. Наконец, когда угол падения становится таким, что преломленный пучок идет вдоль границы раздела (см. рис. 102), доля отраженной энергии составляет почти 100%. Повернем осветитель, сделав угол падения а большим ао. Мы увидим, что преломленный пучок исчез и весь свет отражается от границы раздела, т. е. происходит полное отражение света.
На рисунке 104 изображен пучок лучей от источника, помещенного в воде недалеко от ее поверхности. Большая интенсивность света показана большей толщиной линии, изображающей соответствующий луч.
Угол падения ао, соответствующий углу преломления 90°, называют предельным углом полного отражения
При sin β= 1 формула (5.8) при нимает вид
Из этого равенства и может быть найдено значение предельного угла полного отражения ао. Для воды (n = 1,33) он оказывается равным 48°35′, для стекла (n =1,5) он принимает значение 41°51′, а для алмаза (n— 2,42) этот угол составляет 24°40′. Во всех случаях второй средой является воздух.
Явление полного отражения легко наблюдать на простом опыте. Нальем в стакан воду и поднимем его несколько выше уровня глаз. Поверхность воды при рассматривании ее снизу сквозь стенку кажется блестящей, словно посеребренной вследствие полного отражения света.
Полное отражение используют в так называемой волоконной оптике для передачи света и изображения по пучкам прозрачных гибких волокон — световодов. Световод представляет собой стеклянное волокно цилиндрической формы, покрытое оболочкой из прозрачного материала с меньшим, чем у волокна, показателем преломления. За счет многократного полного отражения свет может быть направлен по любому (прямому или изогнутому) пути (рис. 105). Волокна набираются в жгуты. При этом по каждому из волокон передается какой-нибудь элемент изображения (рис. 106). Жгуты из волокон используются, например, в медицине для исследования внутренних органов.
По мере улучшения технологии изготовления длинных пучков волокон— световодов все шире начинает применяться связь (в том числе и телевизионная) с помощью световых лучей.
Трехсантиметровые волны: закон отражения (металл)
Полное внутреннее отражение
Внутреннее отражение
Из Википедии — свободной энциклопедии
Вну́треннее отраже́ние — явление отражения электромагнитных или звуковых волн от границы раздела двух сред при условии, что волна падает из среды, где скорость её распространения меньше (в случае световых лучей это соответствует бо́льшему показателю преломления).
Неполное внутреннее отражение — внутреннее отражение при условии, что угол падения меньше критического угла. В этом случае луч раздваивается на преломлённый и отражённый. [1]
Полное внутреннее отражение — внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. Коэффициент отражения при полном внутреннем отражении не зависит от длины волны.
В оптике это явление наблюдается для широкого спектра электромагнитного излучения, включая рентгеновский диапазон.
В геометрической оптике явление объясняется в рамках закона Снеллиуса. Учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего показателя преломления к большему показателю, электромагнитная волна должна полностью отражаться в первую среду.
В соответствии с волновой теорией явления, электромагнитная волна всё же проникает во вторую среду — там распространяется так называемая «неоднородная волна», которая экспоненциально затухает и энергию с собой не уносит. Характерная глубина проникновения неоднородной волны во вторую среду порядка длины волны.