что такое пнд в криптографии

Защита персональных данных шифрованием

Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

что такое пнд в криптографии. zashhita personalnyh dannyh shifrovaniem scaled. что такое пнд в криптографии фото. что такое пнд в криптографии-zashhita personalnyh dannyh shifrovaniem scaled. картинка что такое пнд в криптографии. картинка zashhita personalnyh dannyh shifrovaniem scaled. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

Законодательно подлежат шифрованию ПДн от обезличенно-общих до личных, имеющих прямое воздействие на человека (здоровье, религиозные взгляды, особенности личной жизни). Самая высокая категорийность защиты требуется данным, которые передаются в Пенсионный фонд (ФИО, зарплата, социальное положение, инвалидность, семейное положение, число детей и т.п.).

Разделяются базы данных на малые, средние и распределенные. В крупных системах важна отладка системы корреляции событий, устанавливающих взаимосвязь сообщений о потенциальных угрозах, проводящих комплексную оценку опасности.

Законом о шифровании персональных данных 152-ФЗ Правительство РФ установило алгоритм, позволяющий безопасно работать с информацией, а также меры взыскания в случае несоблюдения требований вплоть до уголовной ответственности и аннулирования лицензий. К шифрованию персональных данных предъявляются требования следующего порядка:

Необходимость регулярного обновления технологий защиты позволила выработать ГОСТы шифрования персональных данных (Р 34.11-2012 «Стрибог», блочные Р 34.12-2015 «Магма»/«Кузнечик», Р 34.13-2015). ГОСТовские алгоритмы устойчивы к взлому, отличаются высокой производительностью и хорошими данными распараллеливания), позволяя подбирать оптимальную защиту к различным (ограниченным или полноценным) ресурсам вычислительного оборудования.

Алгоритмы шифрования данных

Алгоритм защиты персональных данных в организации включает типовой перечень действий, которые необходимо выполнить для защиты:

Алгоритм построения системы защиты персональных данных состоит из пяти этапов:

Для распространенной платформы 1С шифрование выполняется без внешних компонентов, com объектов, чтобы полностью изолировать ее от привязки к операционной системе.

Источник

Криптографическая защита информации

Вы будете перенаправлены на Автор24

Криптографическая защита информации – это механизм защиты посредством шифрования данных для обеспечения информационной безопасности общества.

Криптографические методы защиты информации активно используются в современной жизни для хранения, обработки и передачи информации по сетям связи и на различных носителях.

Сущность и цели криптографической защиты информации

Сегодня самым надежным способом шифрования при передаче информационных данных на большие расстояния является именно криптографическая защита информации.

Криптография – это наука, изучающая и описывающая модели информационной безопасности (далее – ИБ) данных. Она позволяет разрешить многие проблемы, что присущи информационной безопасности сети: конфиденциальность, аутентификация, контроль и целостность взаимодействующих участников.

Шифрование – это преобразование информационных данных в форму, которая будет не читабельной для программных комплексов и человека без ключа шифрования-расшифровки. Благодаря криптографическим методам защиты информации обеспечиваются средства информационной безопасности, поэтому они являются основной частью концепции ИБ.

Ключевой целью криптографической защиты информации является обеспечение конфиденциальности и защиты информационных данных компьютерных сетей в процессе передачи ее по сети между пользователями системы.

Защита конфиденциальной информации, которая основана на криптографической защите, зашифровывает информационные данные посредством обратимых преобразований, каждое из которых описывается ключом и порядком, что определяет очередность их применения.

Готовые работы на аналогичную тему

Важным компонентом криптографической защиты информации является ключ, отвечающий за выбор преобразования и порядок его реализации.

Ключ – это определенная последовательность символов, которая настраивает шифрующий и дешифрующий алгоритм системы криптозащиты информации. Каждое преобразование определяется ключом, задающим криптографический алгоритм, который обеспечивает безопасность информационной системы и информации в целом.

Каждый алгоритм криптозащиты информации работает в разных режимах, которые обладают, как рядом преимуществ, так и рядом недостатков, что влияют на надежность информационной безопасности государства и средства ИБ.

Средства и методы криптографической защиты информации

К основным средствам криптозащиты информации можно отнести программные, аппаратные и программно-аппаратные средства, которые реализуют криптографические алгоритмы информации с целью:

В настоящее время криптографические методы защиты информации для обеспечения надежной аутентификации сторон информационного обмена являются базовыми. Они предусматривают шифрование и кодирование информации.

Различают два основных метода криптографической защиты информации:

В ассиметричных методах криптографической защиты информации используются два ключа:

Из ассиметричных наиболее известным методом криптографической защиты информации является метод RSA, который основан на операциях с большими (100-значными) простыми числами, а также их произведениями.

Благодаря применению криптографических методов можно надежно контролировать целостность отдельных порций информационных данных и их наборов, гарантировать невозможность отказаться от совершенных действий, а также определять подлинность источников данных.

Основу криптографического контроля целостности составляют два понятия:

Хэш-функция – это одностороння функция или преобразование данных, которое сложно обратить, реализуемое средствами симметричного шифрования посредством связывания блоков. Результат шифрования последнего блока, который зависит от всех предыдущих, и служит результатом хэш-функции.

В коммерческой деятельности криптографическая защита информации приобретает все большее значение. Для того чтобы преобразовать информацию, используются разнообразные шифровальные средства: средства шифрования документации (в том числе для портативного исполнения), средства шифрования телефонных разговоров и радиопереговоров, а также средства шифрования передачи данных и телеграфных сообщений.

Для того чтобы защитить коммерческую тайну на отечественном и международном рынке, используются комплекты профессиональной аппаратуры шифрования и технические устройства криптозащиты телефонных и радиопереговоров, а также деловой переписки.

Кроме этого широкое распространение получили также маскираторы и скремблеры, которые заменяют речевой сигнал цифровой передачей данных. Производятся криптографические средства защиты факсов, телексов и телетайпов. Для этих же целей применяются и шифраторы, которые выполняются в виде приставок к аппаратам, в виде отдельных устройств, а также в виде устройств, которые встраиваются в конструкцию факс-модемов, телефонов и других аппаратов связи. Электронная цифровая подпись широкое применяется для того, чтобы обеспечить достоверность передаваемых электронных сообщений.

Криптографическая защита информации в РФ решает вопрос целостности посредством добавления определенной контрольной суммы или проверочной комбинации для того, чтобы вычислить целостность данных. Модель информационной безопасности является криптографической, то есть она зависит от ключа. По оценкам информационной безопасности, которая основана на криптографии, зависимость вероятности прочтения данных от секретного ключа является самым надежным инструментом и даже используется в системах государственной информационной безопасности.

Источник

Использование шифрования в компаниях России

Введение

Ситуация изменилась лишь в 1990 году, когда в действие был введен стандарт шифрования ГОСТ 28147-89. Изначально алгоритм имел гриф ДСП и официально «полностью открытым» стал лишь в 1994 году.

Сложно точно сказать, когда именно в отечественной криптографии был совершен информационный прорыв. Скорее всего, это произошло с появлением у широкой общественности доступа в интернет, после чего в сети начали публиковаться многочисленные материалы с описаниями криптографических алгоритмов и протоколов, статьи по киптоанализу и другая информация, имеющая отношение к шифрованию.

В сложившихся условиях криптография больше не могла оставаться прерогативой одного лишь государства. Кроме того, развитие информационных технологий и средств связи обусловило потребность в использовании средств криптографической защиты коммерческими компаниями и организациями.

что такое пнд в криптографии. a5ed61d9ea7115ece5a6556279def2d8. что такое пнд в криптографии фото. что такое пнд в криптографии-a5ed61d9ea7115ece5a6556279def2d8. картинка что такое пнд в криптографии. картинка a5ed61d9ea7115ece5a6556279def2d8. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

Сегодня к средствам криптографической защиты информации (СКЗИ) относят: средства шифрования, средства имитозащиты, средства электронной цифровой подписи, средства кодирования, средства изготовления ключевых документов и сами ключевые документы. [4, с2-3.]

Далее в статье речь пойдет о том, какое практическое применение на настоящий момент шифрование и СКЗИ нашли в российских компаниях и организациях. Будут рассмотрены следующие направления:

Применение криптографии и СКЗИ в российских компаниях

1. Внедрение криптосредств в системы защиты персональных данных

Деятельность практически любой российской компании сегодня связана с хранением и обработкой персональных данных (ПДн) различных категорий, к защите которых законодательством РФ выдвигается ряд требований [1]. Для их выполнения руководство компании, прежде всего, сталкивается с необходимостью формирования модели угроз персональным данным и разработки на ее основе системы защиты персональных данных, в состав которой должно входить средство криптографической защиты информации. [2, с 1.]

К СКЗИ, внедренному в систему защиты персональных данных, выдвигаются следующие требования:

Таким образом, средства криптографической защиты сегодня эффективно используются компаниями и организациями для защиты персональных данных российских граждан и являются одной из наиболее важных составляющих в системах защиты персональных данных.

2. Защита корпоративной информации

Если в п.1 использование крпитогарфических средств обусловлено, прежде всего, требованиями законодательства РФ, то в данном случае в применении СКЗИ заинтересовано руководство самой компании. С помощью средства шифрования компания получает возможность защитить свою корпоративную информацию – сведения, представляющие коммерческую тайну, интеллектуальную собственность, оперативную и техническую информацию и др.

На сегодняшний день для эффективного применения в корпоративной среде, программа для шифрования должна обеспечивать:

3. Электронная подпись

Электронная подпись (ЭП) сегодня является полноценным аналогом собственноручной подписи и может быть использована юридическими и физическими лицами для того, чтобы обеспечить документу в цифровом формате юридическую силу. Применение ЭП в электронных системах документооборота значительно увеличивает скорость заключения коммерческих сделок, уменьшает объем бумажных бухгалтерских документов, экономит время сотрудников. Кроме того, ЭП сокращает расходы предприятия на заключение договоров, оформление платежных документов, получение различных справок от государственных учреждений и многое другое.

Средства криптографической защиты, как правило, имеют в своем составе функции по созданию и проверке электронных подписей. Российским законодательством к таким СКЗИ выдвигаются следующие требования [5, с 3.]:

4. Шифрование электронной почты

Для большинства компаний электронная почта является основным средством коммуникации между сотрудниками. Ни для кого не секрет, что по корпоративной электронной почте сегодня пересылается огромное количество конфиденциальной информации: договора, счета, сведения о продуктах и ценовых политиках компании, финансовые показатели и др. Если подобная информация окажется доступной для конкурентов, это может нанести значительный ущерб компании вплоть до прекращения ее деятельности.

Поэтому защита корпоративной почты – крайне важная составляющая в обеспечении информационной безопасности компании, реализация которой становится возможной также благодаря использованию криптографии и средств шифрования.

Большинство почтовых клиентов, таких как Outlook, Thinderbird, The Bat! и др., позволяют настроить обмен зашифрованными сообщениями на основе сертификатов открытого и закрытого ключа (сертификаты в форматах X.509 и PKCS#12 соответственно), создаваемых при помощи средств криптографической защиты.

Здесь также следует упомянуть о возможности криптографических средств работать в качестве удостоверяющих центров (УЦ). Основное предназначение удостоверяющего центра — выдача сертификатов шифрования и подтверждение подлинности ключей шифрования. В соответствии с российским законодательством, УЦ подразделяются на классы (КС1, КС2, КС3, КВ1, КВ2, КА1), к каждому из которых выдвигается ряд требований [5]. При этом, класс СКЗИ, использующегося в средствах УЦ, должен быть не ниже соответствующего класса УЦ [5, с 14.].

Использование CyberSafe Enterprise

Разрабатывая программу CyberSafe Enterprise мы постарались учесть все вышеописанные возможности, включив их в функциональный набор программы. Так, она поддерживает функции, перечисленные в п.2 данной статьи, шифрование электронной почты, создание и проверку цифровых подписей, а также работу в качестве удостоверяющего центра.

Наличие в CyberSafe сервера публичных ключей позволяет компаниям организовать удобный обмен ключами между своими сотрудниками, где каждый из них может опубликовать свой открытый ключ, а также скачать открытые ключи других пользователей.

Таким образом, имея в своем составе встроенное СКЗИ КриптоПро CSP, программа CyberSafe Enterprise может быть использована в системе защиты персональных данных классов КС1 и КС2.

После установки КриптоПро CSP на компьютер пользователя при создании сертификата в CyberSafe Enterprise появится возможность создать сертификат КриптоПРО:

что такое пнд в криптографии. 3bc73138daeedf3f26ef73fcd4f0d47b. что такое пнд в криптографии фото. что такое пнд в криптографии-3bc73138daeedf3f26ef73fcd4f0d47b. картинка что такое пнд в криптографии. картинка 3bc73138daeedf3f26ef73fcd4f0d47b. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

Далее необходимо выбрать место хранения контейнера закрытого ключа КриптоПро и задать пароль к контейнеру. Для хранения может быть использован реестр операционной системы либо съемный носитель (токен):

что такое пнд в криптографии. 6b6a46fe1b37c8830f24942d92b1b7ab. что такое пнд в криптографии фото. что такое пнд в криптографии-6b6a46fe1b37c8830f24942d92b1b7ab. картинка что такое пнд в криптографии. картинка 6b6a46fe1b37c8830f24942d92b1b7ab. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

что такое пнд в криптографии. c2ca0e6a5c208f909cd8f0a985301901. что такое пнд в криптографии фото. что такое пнд в криптографии-c2ca0e6a5c208f909cd8f0a985301901. картинка что такое пнд в криптографии. картинка c2ca0e6a5c208f909cd8f0a985301901. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

После завершения создания сертификата CyberSafe ключи КриптоПРО также созданы, отображаются на вашей связке и доступны для использования:

что такое пнд в криптографии. 3b94161c6115f87b0c43e6f9cb8c9c84. что такое пнд в криптографии фото. что такое пнд в криптографии-3b94161c6115f87b0c43e6f9cb8c9c84. картинка что такое пнд в криптографии. картинка 3b94161c6115f87b0c43e6f9cb8c9c84. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

В том случае, если возникает необходимость экспортировать ключи КриптоПро в отдельный файл, это можно сделать через стандартную функцию экспорта ключей CyberSafe:

что такое пнд в криптографии. 8dfea1cfd714cbeacc91f6f39992a47b. что такое пнд в криптографии фото. что такое пнд в криптографии-8dfea1cfd714cbeacc91f6f39992a47b. картинка что такое пнд в криптографии. картинка 8dfea1cfd714cbeacc91f6f39992a47b. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

Если вы хотите зашифровать файлы для передачи другим пользователям (или подписать их своей цифровой подписью) и использовать для этого ключи КриптоПро, из списка доступных криптопровайдеров необходимо выбрать КриптоПро:

что такое пнд в криптографии. 358bb629e29ad2e7c11f5128add83ab1. что такое пнд в криптографии фото. что такое пнд в криптографии-358bb629e29ad2e7c11f5128add83ab1. картинка что такое пнд в криптографии. картинка 358bb629e29ad2e7c11f5128add83ab1. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

В том случае, если вы хотите использовать ключи КриптоПро для прозрачного шифрования файлов, в окне выбора сертификатов в качестве криптопровайдера также следует указать КриптоПро:

что такое пнд в криптографии. 547106aefc15e83d021b3894131cf20c. что такое пнд в криптографии фото. что такое пнд в криптографии-547106aefc15e83d021b3894131cf20c. картинка что такое пнд в криптографии. картинка 547106aefc15e83d021b3894131cf20c. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

В CyberSafe существует возможность использовать КриптоПРО и алгоритм ГОСТ для шифрования логических дисков/разделов и создания виртуальных зашифрованных дисков:

что такое пнд в криптографии. 61ec0ed503529de64a7d1fd087385b11. что такое пнд в криптографии фото. что такое пнд в криптографии-61ec0ed503529de64a7d1fd087385b11. картинка что такое пнд в криптографии. картинка 61ec0ed503529de64a7d1fd087385b11. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

что такое пнд в криптографии. a1ba0d323267b29a6f5c64aec61806e6. что такое пнд в криптографии фото. что такое пнд в криптографии-a1ba0d323267b29a6f5c64aec61806e6. картинка что такое пнд в криптографии. картинка a1ba0d323267b29a6f5c64aec61806e6. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

Также, на основе сертификатов КриптоПро, может быть настроено шифрование электронной почты. В КприптоПро CSP алгоритмы формирования и проверки ЭП реализованы в соответствии с требованиями стандарта ГОСТ Р 34.10-2012, алгоритм шифрования/дешифрования данных реализован в соответствии с требованиями стандарта ГОСТ 28147-89.

На сегодняшний день CyberSafe является единственной программой, которая сочетает в себе функции по шифрованию файлов, сетевых папок, логических дисков, электронной почты и возможность работы в качестве удостоверяющего центра с поддержкой стандартов шифрования ГОСТ 28147-89 и ГОСТ Р 34.10-2012.

Источник

Основы криптографии: от математики до физики

Авторизуйтесь

Основы криптографии: от математики до физики

Основы криптографии включают шифры, специальную терминологию и отдельные компоненты криптосистемы. Сегодня эта наука тесно связана с информационной безопасностью.

Примечание Вы читаете улучшенную версию некогда выпущенной нами статьи.

Задачи, которые решает криптография:

Популярные шифры

Чтобы понять основы шифрования, необходимо обратиться к популярным примерам.

Квадрат Полибия

Квадрат Полибия — шифр простой замены. В данном примере будет использоваться двумерная матрица 6х6, содержащая заглавные буквы алфавита и цифры от 0 до 9:

что такое пнд в криптографии. image3. что такое пнд в криптографии фото. что такое пнд в криптографии-image3. картинка что такое пнд в криптографии. картинка image3. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

С матрицей 6х6 (36 буквенно-цифровых знаков) мы можем начать замену. Например, буква «А» имеет адрес 1х1 или x=1, y=1. Эту запись можно упростить до 11. Другой пример: адрес буквы «N» будет 2х3 или x=2, y=3 или 23.

Шифр может сделать достаточно длинным и сложным, используя прописные буквы и специальные символы. Также повторение символов и написание алфавита вразброс может дать непредсказуемый результат, устойчивый для метода полного перебора.

Шифр Цезаря

что такое пнд в криптографии. image7. что такое пнд в криптографии фото. что такое пнд в криптографии-image7. картинка что такое пнд в криптографии. картинка image7. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

Шифр Цезаря считается самым первым. Цезарь использовал его для кодирования сообщений своим генералам, чтобы враги из Римской Империи не смогли прочитать приказы при перехвате. Шифр Цезаря имеет элементарную форму шифрования, и сегодня его легко взломать: алфавит просто сдвигается вправо или влево. Разные значения сдвига приводят к разным результатам шифровки. Число сдвига — это число букв, на которое происходит смещение в одну из сторон, для создания шифротекста.

Пример использования шифра со сдвигом влево на 3:

Шифротекст выше может быть легко взломан методом полного перебора, который заключается в сдвиге в одну из сторон на одну позицию, пока не получится какое-то смысловое сообщение.

Прим. пер. Существует более простой способ взлома шифра Цезаря — частотный анализ. Он заключается в подсчёте частоты встреч каждого символа в любом обычном тексте и в шифротексте. Потом символы с похожими частотами заменяются. Например, если в шифротексте чаще всего встречается буква «T», то она заменяется на букву «Е» для английского алфавита. Этот способ действует только для текстов свыше 300 символов.

Квадрат Виженера

Это усовершенствованный шифр Цезаря с разными значениями сдвига. Например, к первой букве сообщения применяется преобразование ROT5, ко второй — ROT16, etc.

что такое пнд в криптографии. image6. что такое пнд в криптографии фото. что такое пнд в криптографии-image6. картинка что такое пнд в криптографии. картинка image6. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

Также у нас есть статья, из которой вы узнаете о самых популярных кодах и шифрах.

Полиморфизм

Основы шифрования и криптографии включают в себя полиморфизм. Это более продвинутая практика в криптографии и часто используется в техниках компьютерного шифрования. Такая техника, которая самостоятельно модифицирует криптоалгоритм после каждого выполнения, и на каждой итерации получаются разные результаты. Если понадобится зашифровать одну и ту же информацию два раза, то алгоритм выдаст разные шифротексты.

Распространённые алгоритмы

Сегодня шифры используют алгоритмы либо с секретным, либо с публичным ключом. В шифрах с закрытым ключом используется единственный ключ, которым обмениваются стороны. Такой ключ или шифр также называют симметричным.

что такое пнд в криптографии. image10. что такое пнд в криптографии фото. что такое пнд в криптографии-image10. картинка что такое пнд в криптографии. картинка image10. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

В 1949 году Клод Шеннон из Bell Laboratories опубликовал фундаментальную теорию, положившую начало симметричному шифрованию, а десятилетия эволюции принесли примеры высокого качества. Однако только в 1975 году мощный алгоритм с закрытым ключом DES стал доступен для общего пользования.

Шифрование с помощью открытого ключа или асимметричное шифрование также возникло в середине 1970-х. Асимметричные шифры используют пару ключей — открытый, им делятся с другими людьми, и соответствующий ему закрытый, пользователь должен хранить его в секрете от других.

что такое пнд в криптографии. image2. что такое пнд в криптографии фото. что такое пнд в криптографии-image2. картинка что такое пнд в криптографии. картинка image2. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

Стойкость шифровального алгоритма зависит от трёх важных факторов:

Виды алгоритмов

DES выдержал испытание временем и вошёл в основы криптографии. После четверти века исследований учёным удалось найти несколько спекулятивных атак, которые в конечном итоге не были столь эффективными, как метод полного перебора. Единственная реальная слабость DES-шифра — маленькая длина ключа в 56 бит.

что такое пнд в криптографии. image11. что такое пнд в криптографии фото. что такое пнд в криптографии-image11. картинка что такое пнд в криптографии. картинка image11. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

Triple DES (3DES) — модификация DES, позволяющая увеличить длину ключа до 112 или 168 бит.

AES (Advanced Encryption Standard или Rijndael) поддерживает три длины ключа: 128, 192 и 256 бит. Использует 128-битный размер блоков. Считается стойким и используется по всему миру.

что такое пнд в криптографии. image1. что такое пнд в криптографии фото. что такое пнд в криптографии-image1. картинка что такое пнд в криптографии. картинка image1. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

Алгоритм шифрования Rijndael (AES)

Так как DES был специально разработан для аппаратного обеспечения, то не было предусмотрено, чтобы он эффективно работал в ПО. NIST протестировал работу алгоритма AES в программной среде и разработал требования к хранению криптоматериала, чтобы гарантировать, что AES будет эффективно работать на C и Java, которые используются на рабочих станциях, а также в более ограниченных средах встроенных процессоров ARM и смарт-карт.

Архитектура AES основана на принципе, известном как замена и перестановка, и быстро работает как в программном, так и на аппаратном уровнях. В отличие от своего предшественника — DES, AES не использует сеть Фейстеля.

Длина ключа, используемого для шифрования AES, указывает на количество повторений раундов преобразования, которые преобразуют входной сигнал, называемый исходным текстом, а конечный вывод — шифротекстом. Число циклов повторения выглядит следующим образом:

что такое пнд в криптографии. image9. что такое пнд в криптографии фото. что такое пнд в криптографии-image9. картинка что такое пнд в криптографии. картинка image9. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

Каждый раунд состоит из нескольких этапов обработки. Набор обратных повторений применяется для преобразования шифротекста в исходный текст с использованием того же самого ключа шифрования.

Квантовая криптография

что такое пнд в криптографии. image4. что такое пнд в криптографии фото. что такое пнд в криптографии-image4. картинка что такое пнд в криптографии. картинка image4. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.

Это уже не совсем основы криптографии, а более продвинутый уровень.

На приведённой диаграмме квантовое распределение ключей (протокол BB84), являющееся безопасным способом связи, который реализует криптографический протокол с участием компонентов квантовой механики. Он позволяет двум сторонам создавать общий закрытый ключ, известный только им.

Новое поколение криптографии будет основываться не на математике, а на физике. Учёные в области физики атомов и частиц уже вошли в мир основ криптографии и хотят использовать законы квантовой механики для отправки сообщений, которые невозможно взломать. Они основоположники новой науки — квантовой криптографии.

Источник

Введение в криптографию и шифрование, часть первая. Лекция в Яндексе

Чтобы сходу понимать материалы об инфраструктуре открытых ключей, сетевой безопасности и HTTPS, нужно знать основы криптографической теории. Один из самых быстрых способов изучить их — посмотреть или прочитать лекцию Владимира ivlad Иванова. Владимир — известный специалист по сетям и системам их защиты. Он долгое время работал в Яндексе, был одним из руководителей нашего департамента эксплуатации.

Мы впервые публикуем эту лекцию вместе с расшифровкой. Начнём с первой части. Под катом вы найдёте текст и часть слайдов.

Я когда-то читал в МГУ лекции по крипте, и они занимали у меня по полгода. Я попытаюсь вам всё рассказать за два с половиной часа. Никогда этого не делал. Вот и попробуем.

Кто понимает, что такое DES? AES? TLS? Биноминальное отображение?

Говорить постараемся в общих терминах, потому что сложно и глубоко разбирать не получится: мало времени и базовая подготовка должна быть довольно большой. Будем оперировать общими концепциями, довольно поверхностно.

Мы поговорим о том, что такое криптографические примитивы, простые штучки, из которых впоследствии можно строить более сложные вещи, протоколы.

Мы будем говорить о трех примитивах: симметричном шифровании, аутентификации сообщений и асимметричном шифровании. Из них вырастает очень много протоколов.

Сегодня мы попробуем чуть-чуть поговорить про то, как вырабатываются ключи. В общем виде поговорим о том, как отправить защищенное сообщение, используя криптопримитивы, которые у нас есть, от одного пользователя другому.

Когда люди говорят про крипту вообще, есть несколько фундаментальных принципов. Один из них — принцип Керкгоффса, который говорит, что open source в криптографии очень важен. Если точнее, он дает общее знание об устройстве протоколов. Смысл очень простой: криптографические алгоритмы, которые используются в той или иной системе, не должны быть секретом, обеспечивающим ее устойчивость. В идеале необходимо строить системы так, чтобы их криптографическая сторона была полностью известна атакующему и единственным секретом являлся криптографический ключ, который в данной системе используется.

Современные и коммерчески доступные системы шифрования — все или почти все или лучшие из них — построены из компонент, устройство и принцип работы которых хорошо известны. Единственная секретная вещь в них — ключ шифрования. Есть только одно известное мне значимое исключение — набор секретных криптографических протоколов для всевозможных государственных организаций. В США это называется NSA suite B, а в России это всякие странные секретные алгоритмы шифрования, которые до определенной степени используются военными и государственными органами.

Не сказал бы, что такие алгоритмы приносят им большую пользу, за исключением того, что это примерно как атомная физика. Можно попытаться по пониманию дизайна протокола понять направление мысли людей, которые его разработали, и неким образом обогнать другую сторону. Не знаю, насколько такой принцип актуален по нынешним меркам, но люди, знающие про это больше меня, поступают именно так.

В каждом коммерческом протоколе, с которым вы столкнетесь, ситуация обстоит иначе. Там везде используется открытая система, все придерживаются этого принципа.

Первый криптографический примитив — симметричные шифры.
что такое пнд в криптографии. 7a7309454bfd4186b17414f42bdcc455. что такое пнд в криптографии фото. что такое пнд в криптографии-7a7309454bfd4186b17414f42bdcc455. картинка что такое пнд в криптографии. картинка 7a7309454bfd4186b17414f42bdcc455. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.
Они очень простые. У нас есть какой-то алгоритм, на вход которого поступает открытый текст и нечто, называемое ключом, какое-то значение. На выходе получается зашифрованное сообщение. Когда мы хотим его дешифровать, важно, чтобы мы брали тот же самый ключ шифрования. И, применяя его к другому алгоритму, алгоритму расшифровки, мы из шифротекста получаем наш открытый текст назад.
что такое пнд в криптографии. 7558f72db31e493894211e82dfddecfe. что такое пнд в криптографии фото. что такое пнд в криптографии-7558f72db31e493894211e82dfddecfe. картинка что такое пнд в криптографии. картинка 7558f72db31e493894211e82dfddecfe. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.
Какие здесь важные нюансы? В большинстве распространенных алгоритмов симметричного шифрования, с которыми можно столкнуться, размер шифротекста всегда равен размеру открытого текста. Современные алгоритмы шифрования оперируют размерами ключей. Размер ключей измеряется в битах. Современный размер — от 128 до 256 бит для алгоритмов симметричного шифрования. Об остальном, в том числе о размере блока, мы поговорим позже.
что такое пнд в криптографии. a2bbb66941e84bef9a462876b7bf0448. что такое пнд в криптографии фото. что такое пнд в криптографии-a2bbb66941e84bef9a462876b7bf0448. картинка что такое пнд в криптографии. картинка a2bbb66941e84bef9a462876b7bf0448. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.
Исторически, в условном IV веке до нашей эры, существовало два метода дизайна шифров: шифры подстановки и перестановки. Шифры подстановки — алгоритм, где в те времена заменяли одну букву сообщения на другую по какому-то принципу. Простой шифр подстановки — по таблице: берем таблицу, где написано, что А меняем на Я, Б на Ю и т. д. Дальше по этой таблице шифруем, по ней же дешифруем.

Как вы считаете, с точки зрения размера ключа насколько это сложный алгоритм? Сколько вариантов ключей существует? Порядок факториала длины алфавита. Мы берем таблицу. Как мы ее строим? Допустим, есть таблица на 26 символов. Букву А можем заменить на любой из них, букву Б — на любой из оставшихся 25, С — на любой из оставшихся 24… Получаем 26*25*24*… — то есть факториал от 26. Факториал размерности алфавита.

Если взять log226!, это будет очень много. Думаю, вы точно получите в районе 100 бит длины ключа, а то и поболее. Оказалось, что с точки зрения формального представления стойкости указанный алгоритм шифрования — довольно неплохой. 100 бит — приемлемо. При этом все, наверное, в детстве или юности, когда сталкивались с кодировками, видели, что такие алгоритмы дешифруются тривиально. Проблем с расшифровкой нет.

Долго существовали всякие алгоритмы подстановки в разных конструкциях. Одним из них, еще более примитивным, является шифр Цезаря, где таблица формируется не случайной перестановкой символов, а сдвигом на три символа: А меняется на D, B на Е и т. д. Понятно, что шифр Цезаря вместе со всеми его вариантами перебрать очень легко: в отличие от табличной подстановки, в ключе Цезаря всего 25 вариантов при 26 буквах в алфавите — не считая тривиального шифрования самого в себя. И его как раз можно перебрать полным перебором. Здесь есть некоторая сложность.

Почему шифр табличной подстановки такой простой? Откуда возникает проблема, при которой мы можем легко, даже не зная ничего про криптографию, расшифровать табличную подстановку? Дело в частотном анализе. Есть самые распространенные буквы — какая-нибудь И или Е. Их распространенность велика, гласные встречаются намного чаще, чем согласные, и существуют негативные пары, никогда не встречающиеся в естественных языках, — что-то вроде ЬЪ. Я даже давал студентам задание сделать автоматический дешифратор шифра подстановки, и, в принципе, многие справлялись.

В чем проблема? Надо статистику распределения букв исказить, чтобы распространенные буквы не так светились в зашифрованном тексте. Очевидный способ: давайте будем шифровать самые часто встречающиеся буквы не в один символ, а в пять разных, например. Если буква встречается в среднем в пять раз чаще, то давайте по очереди — сначала в первый символ будем зашифровывать, потом во второй, в третий и т. д. Далее у нас получится маппинг букв не 1 к 1, а, условно, 26 к 50. Статистика, таким образом, нарушится. Перед нами первый пример полиалфавитного шифра, который как-то работал. Однако с ним есть довольно много проблем, а главное, очень неудобно работать с таблицей.

Дальше придумали: давайте не будем шифровать такими таблицами, а попробуем брать шифр Цезаря и для каждой следующей буквы изменять сдвиг. Результат — шифр Виженера.

Берем в качестве ключа слово ВАСЯ. Берем сообщение МАША. Задействуем шифр Цезаря, но отсчитывая от этих букв. Например, В — третья буква в алфавите. Мы должны сдвинуть на три буквы соответствующую букву в открытом тексте. М сдвигается в П. А в А. Ш — на 16, перескочим букву А, получим, условно, Д. Я сдвинет А в Я. ПАДЯ.

Что удобно в получившемся шифре? Здесь было две одинаковых буквы, но в результате они зашифровались в разные. Это классно, потому что размывает статистику. Метод хорошо работал, пока где-то в XIX веке, буквально недавно на фоне истории криптографии, не придумали, как его ломать. Если посмотреть на сообщение из нескольких десятков слов, а ключ довольно короткий, то вся конструкция выглядит как несколько шифров Цезаря. Мы говорим: окей, давайте каждую четвертую букву — первую, пятую, девятую — рассматривать как шифр Цезаря. И поищем среди них статистические закономерности. Мы обязательно их найдем. Потом возьмем вторую, шестую, десятую и так далее. Опять найдем. Тем самым мы восстановим ключ. Единственная проблема — понять, какой он длины. Это не очень сложно, ну какой он может быть длины? Ну 4, ну 10 символов. Перебрать 6 вариантов от 4 до 10 не очень сложно. Простая атака — она была доступна и без компьютеров, просто за счет ручки и листа бумаги.

Как из этой штуки сделать невзламываемый шифр? Взять ключ размера текста. Персонаж по имени Клод Шэннон в ХХ веке, в 1946 году, написал классическую первую работу по криптографии как по разделу математики, где сформулировал теорему. Длина ключа равна длине сообщения — он использовал XOR вместо сложения по модулю, равному длине алфавита, но в данной ситуации это не очень принципиально. Ключ сгенерирован случайным образом, является последовательностью случайных бит, и на выходе тоже получится случайная последовательность бит. Теорема: если у нас есть такой ключ, то подобная конструкция является абсолютно стойкой. Доказательство не очень сложное, но сейчас не буду про него говорить.

Важно, что можно создать невзламываемый шифр, но у него есть недостатки. Во-первых, ключ должен быть абсолютно случайным. Во-вторых, он никогда не должен использоваться повторно. В-третьих, длина ключа должна быть равна длине сообщения. Почему нельзя использовать один и тот же ключ для шифровки разных сообщений? Потому что, перехватив этот ключ в следующий раз, можно будет расшифровать все сообщения? Нет. В первых символах будет виден шифр Цезаря? Не очень понял. Кажется, нет.

Возьмем два сообщения: МАША, зашифрованная ключом ВАСЯ, и другое слово, у которого ключ тоже был ВАСЯ, — ВЕРА. Получим примерно следующее: ЗЕШЯ. Сложим два полученных сообщения, причем так, чтобы два ключа взаимно удалились. В итоге получим лишь разницу между осмысленным шифротекстом и осмысленным шифротекстом. На XOR это делается удобнее, чем на сложении по длине алфавита, но разницы практически никакой.

Если мы получили разницу между двумя осмысленными шифротекстами, то дальше, как правило, становится намного легче, поскольку у текстов на естественном языке высокая избыточность. Зачастую мы можем догадаться, что происходит, делая разные предположения, гипотезы. А главное, что каждая верная гипотеза будет раскрывать нам кусочек ключа, а значит и кусочки двух шифротекстов. Как-то так. Поэтому плохо.

Помимо шифров подстановки, были еще шифры перестановки. С ними тоже все довольно просто. Берем сообщение ВАСЯИ, записываем его в блок какой-то длины, например в ДИДОМ, и считываем результат так же.

Не бог весть какая штука. Как ее ломать, тоже понятно — переберем все возможные варианты перестановок. Тут их не очень много. Берем длину блока, подбираем и восстанавливаем.

В качестве следующей итерации был выбран такой способ: возьмем все то же самое, а сверху напишем какой-нибудь ключ — СИМОН. Переставим столбцы так, чтобы буквы оказались в алфавитном порядке. В итоге получим новую перестановку по ключу. Она уже намного лучше старой, поскольку количество перестановок намного больше и подобрать ее не всегда легко.

Каждый современный шифр тем или иным способом базируется на этих двух принципах — подстановки и перестановки. Сейчас их использование намного более сложное, но сами базовые принципы остались прежними.
что такое пнд в криптографии. cf19617788074743b6f8f5868317f254. что такое пнд в криптографии фото. что такое пнд в криптографии-cf19617788074743b6f8f5868317f254. картинка что такое пнд в криптографии. картинка cf19617788074743b6f8f5868317f254. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.
Если говорить про современные шифры, они делятся на две категории: поточные и блочные. Поточный шифр устроен так, что фактически представляет собой генератор случайных чисел, выход которого мы складываем по модулю 2, «ксорим», с нашим шифротекстом, как видно у меня на слайде. Ранее я сказал: если длина получившегося ключевого потока — она же ключ — абсолютно случайная, никогда повторно не используется и ее длина равна длине сообщения, то у нас получился абсолютно стойкий шифр, невзламываемый.

Возникает вопрос: как сгенерировать на такой шифр случайный, длинный и вечный Ключ? Как вообще работают поточные шифры? По сути, они представляют собой генератор случайного числа на основе какого-то начального значения. Начальное значение и является ключом шифра, ответом.

Из этой истории есть одно занятное исключение — шифроблокноты. Речь идет о настоящей шпионской истории про настоящий шпионаж. Некие люди, которым нужна абсолютно устойчивая коммуникация, генерируют случайные числа — например, буквальным бросанием кубика или буквальным выниманием шаров из барабана, как в лото. Создают два листа, где печатают эти случайные числа. Один лист отдают получателю, а второй оставляют у отправителя. При желании пообщаться они используют этот поток случайных чисел в качестве ключевого потока. Нет, история взята не из совсем далекого прошлого. У меня есть настоящий радиоперехват от 15 октября 2014 года: 7 2 6, 7 2 6, 7 2 6. Это позывной. 4 8 3, 4 8 3, 4 8 3. Это номер шифроблокнота. 5 0, 5 0, 5 0. Это количество слов. 8 4 4 7 9 8 4 4 7 9 2 0 5 1 4 2 0 5 1 4 и т. д. 50 таких числовых групп. Не знаю где, где-то не в России сидел какой-нибудь человек с ручкой и карандашом у обычного радиоприемника и записывал эти цифры. Записав их, он достал похожую штуку, сложил их по модулю 10 и получил свое сообщение. Другими словами, это реально работает, и подобное сообщение нельзя взломать. Если действительно были сгенерированы хорошие случайные числа и он впоследстии сжег бумажку с ключом, то осуществить взлом нельзя никак, совсем.

Но тут есть довольно много проблем. Первая — как нагенерировать по-настоящему хорошие случайные числа. Мир вокруг нас детерминирован, и если мы говорим про компьютеры, они детерминированы полностью.

Во-вторых, доставлять ключи такого размера… если мы говорим про передачу сообщений из 55 цифровых групп, то проделать подобное не очень сложно, а вот передать несколько гигабайт текста — уже серьезная проблема. Следовательно, нужны какие-нибудь алгоритмы, которые, по сути, генерируют псевдослучайные числа на основе какого-нибудь небольшого начального значения и которые могли бы использоваться в качестве таких потоковых алгоритмов.
что такое пнд в криптографии. 638a94d2a34341feaaef3929c88200ad. что такое пнд в криптографии фото. что такое пнд в криптографии-638a94d2a34341feaaef3929c88200ad. картинка что такое пнд в криптографии. картинка 638a94d2a34341feaaef3929c88200ad. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.
Самый исторически распространенный алгоритм подобного рода называется RC4. Он был разработан Роном Ривестом лет 25 назад и активно использовался очень долго, был самым распространенным алгоритмом для TLS, всех его различных вариантов, включая HTTPS. Но в последнее время RC4 начал показывать свой возраст. Для него существует некоторое количество атак. Он активно используется в WEP. Была одна хорошая лекция Антона, история, которая показывает: плохое применение пристойного даже по нынешним меркам алгоритма шифрования приводит к тому, что компрометируется вся система.

RC4 устроен несложно. На слайде целиком описана его работа. Есть внутренний байтовый стейт из 256 байт. На каждом шаге этого стейта есть два числа, два указателя на разные байты в стейте. И на каждом шаге происходит сложение между этими числами — они помещаются в некоторое место стейта. Полученный оттуда байт является следующим байтом в числовой последовательности. Вращая эту ручку таким образом, выполняя подобное действие на каждом шаге, мы получаем каждый следующий байт. Мы можем получать следующий байт числовой последовательности вечно, потоком.

Большое достоинство RC4 — в том, что он целиком внутрибайтовый, а значит, его программная реализация работает довольно быстро — сильно быстрее, в разы, если не в десятки раз быстрее, чем сравнимый и существовавший примерно в одно время с ним шифр DES. Поэтому RC4 и получил такое распространение. Он долго был коммерческим секретом компании RSA, но потом, где-то в районе 90-х годов, некие люди анонимно опубликовали исходники его устройства в списке рассылки cypherpunks. В результате возникло много драмы, были крики, мол, как же так, какие-то неприличные люди украли интеллектуальную собственность компании RSA и опубликовали ее. RSA начала грозить всем патентами, всевозможными юридическими преследованиями. Чтобы их избежать, все реализации алгоритма, которые находятся в опенсорсе, называются не RC4, а ARC4 или ARCFOUR. А — alleged. Речь идет о шифре, который на всех тестовых кейсах совпадает с RC4, но технически вроде как им не является.

Если вы конфигурируете какой-нибудь SSH или OpenSSL, вы в нем не найдете упоминания RC4, а найдете ARC4 или что-то подобное. Несложная конструкция, он уже старенький, на него сейчас есть атаки, и он не очень рекомендуется к использованию.
что такое пнд в криптографии. e2388da622d24baf817334e07f686eb5. что такое пнд в криптографии фото. что такое пнд в криптографии-e2388da622d24baf817334e07f686eb5. картинка что такое пнд в криптографии. картинка e2388da622d24baf817334e07f686eb5. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.
Было несколько попыток его заменить. Наверное, на мой предвзятый взгляд самым успешным стал шифр Salsa20 и несколько его последователей от широко известного в узких кругах персонажа Дэна Берштайна. Линуксоидам он обычно известен как автор qmail.

Salsa20 устроен сложнее, чем DES. Его блок-схема сложная, но он обладает несколькими интересными и классными свойствами. Для начала, он всегда выполняется за конечное время, каждый его раунд, что немаловажно для защиты от тайминг-атак. Это такие атаки, где атакующий наблюдает поведение системы шифрования, скармливая ей разные шифротексты или разные ключи за этим черным ящиком. И, понимая изменения во времени ответа или в энергопотреблении системы, он может делать выводы о том, какие именно процессы произошли внутри. Если вы думаете, что атака сильно надуманная, это не так. Очень широко распространены атаки подобного рода на смарт-карты — очень удобные, поскольку у атакующего есть полный доступ к коробке. Единственное, что он, как правило, не может в ней сделать, — прочитать сам ключ. Это сложно, а делать все остальное он может — подавать туда разные сообщения и пытаться их расшифровать.

Salsa20 устроен так, чтобы он всегда выполнялся за константное одинаковое время. Внутри он состоит всего из трех примитивов: это сдвиг на константное время, а также сложение по модулю 2 и по модулю 32, 32-битных слов. Скорость Salsa20 еще выше, чем у RC4. Он пока что не получил такого широкого распространения в общепринятой криптографии — у нас нет cipher suite для TLS, использующих Salsa20, — но все равно потихоньку становится мейнстримом. Указанный шифр стал одним из победителей конкурса eSTREAM по выбору лучшего поточного шифра. Их там было четыре, и Salsa — один из них. Он потихоньку начинает появляться во всяких опенсорс-продуктах. Возможно, скоро — может, через пару лет — появятся даже cipher suite в TLS с Salsa20. Мне он очень нравится.

Какая проблема с поточными шифрами? Если у вас есть поток данных, передаваемый по сети, поточный шифр для него удобен. К вам влетел пакет, вы его зашифровали и передали. Влетел следующий — приложили эту гамму и передали. Первый байт, второй, третий по сети идут. Удобно.

Если данные, например гигабайтный файл целиком, зашифрованы на диске поточным шифром, то чтобы прочитать последние 10 байт, вам нужно будет сначала сгенерировать гаммы потока шифра на 1 гигабайт, и уже из него взять последние 10 байт. Очень неудобно.

В Salsa указанная проблема решена, поскольку в нем на вход поступает в том числе и номер блока, который надо сгенерировать. Дальше к номеру блока 20 раз применяется алгоритм. 20 раундов — и мы получаем 512 бит выходного потока.

Самая успешная атака — в 8 раундов. Сам он 256-битный, а сложность атаки в 8 раундов — 250 или 251 бит. Считается, что он очень устойчивый, хороший. Публичный криптоанализ на него есть. Несмотря на всю одиозность личности Берштайна в этом аспекте, мне кажется, что штука хорошая и у нее большее будущее.

Исторически поточных шифров было много. Они первые не только в коммерческом шифровании, но и в военном. Там использовалось то, что называлось линейными регистрами сдвига.

Какие тут проблемы? Первая: в классических поточных шифрах, не в Salsa, чтобы расшифровать последнее значение гигабайтного файла, последний байт, вам нужно сначала сгенерировать последовательность на гигабайт. От нее вы задействуете только последний байт. Очень неудобно.

Поточные шифры плохо пригодны для систем с непоследовательным доступом, самый распространенный пример которых — жесткий диск.

Есть и еще одна проблема, о ней мы поговорим дальше. Она очень ярко проявляется в поточных шифрах. Две проблемы в совокупности привели к тому, что здорово было бы использовать какой-нибудь другой механизм.

Другой механизм для симметричного шифрования называется блочным шифром. Он устроен чуть по-другому. Он не генерирует этот ключевой поток, который надо ксорить с нашим шифротекстом, а работает похоже — как таблица подстановок. Берет блок текста фиксированной длины, на выходе дает такой же длины блок текста, и всё.

Размер блока в современных шифрах — как правило, 128 бит. Бывают разные вариации, но как правило, речь идет про 128 или 256 бит, не больше и не меньше. Размер ключа — точно такой же, как для поточных алгоритмов: 128 или 256 бит в современных реализациях, от и до.

Из всех широко распространенных блочных шифров сейчас можно назвать два — DES и AES. DES очень старый шифр, ровесник RC4. У DES сейчас размер блока — 64 бита, а размер ключа — 56 бит. Создан он был в компании IBM под именем Люцифер. Когда в IBM его дизайном занимался Хорст Фейстель, они предложили выбрать 128 бит в качестве размера блока. А размер ключа был изменяемый, от 124 до 192 бит.

Когда DES начал проходит стандартизацию, его подали на проверку в том числе и в АНБ. Оттуда он вернулся с уменьшенным до 64 бит размером блока и уменьшенным до 56 бит размером ключа.
что такое пнд в криптографии. 24a3409c72de46fd96e71d1bbf6c9605. что такое пнд в криптографии фото. что такое пнд в криптографии-24a3409c72de46fd96e71d1bbf6c9605. картинка что такое пнд в криптографии. картинка 24a3409c72de46fd96e71d1bbf6c9605. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.
20 лет назад вся эта история наделала много шума. Все говорили — наверняка они туда встроили закладку, ужасно, подобрали такой размер блока, чтобы получить возможность атаковать. Однако большое достоинство DES в том, что это первый шифр, который был стандартизован и стал тогда основой коммерческой криптографии.

Его очень много атаковали и очень много исследовали. Есть большое количество всевозможных атак. Но ни одной практически реализуемой атаки до сих пор нет, несмотря на его довольно почтенный возраст. Единственное, размер ключа в 56 бит сейчас просто неприемлемый и можно атаковать полным перебором.

Как устроен DES? Фейстель сделал классную штуку, которую называют сетью Фейстеля. Она оперирует блоками. Каждый блок, попадающий на вход, делится на две части: левую и правую. Левая часть становится правой без изменений. Правая часть ксорится с результатом вычисления некой функции, на вход которой подается левая часть и ключ. После данного преобразования правая часть становится левой.
что такое пнд в криптографии. cb7d534878e046ceb8aca7033100b001. что такое пнд в криптографии фото. что такое пнд в криптографии-cb7d534878e046ceb8aca7033100b001. картинка что такое пнд в криптографии. картинка cb7d534878e046ceb8aca7033100b001. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.
У нее есть несколько интересных достоинств. Первое важное достоинство: функция F может быть любой. Она не должна обладать свойствами обратимости, она может и не быть линейной или нелинейной. Все равно шифр остается симметричным.

Второе очень удобное свойство: расшифровка устроена так же, как шифрование. Если нужно расшифровать данную сеть, вы в прежний механизм вместо открытого текста засовываете шифротекст и на выходе вновь получаете открытый текст.

Почему это удобно? 30 лет назад удобство являлось следствием того, что шифраторы были аппаратными и заниматься дизайном отдельного набора микросхем для шифрования и для расшифровки было трудоемко. А в такой конструкции все очень здорово, фактически мы можем один блок использовать для разных задач.

В реальной ситуации такая конструкция — один раунд блочного шифра, то есть в реальном шифре она выполняется 16 раз с разными ключами. На каждом 16 раунде генерируется отдельный ключ и 16 раундовых подключей, каждый из которых применяется на каждом раунде для функции F.

Раунд тоже выглядит довольно несложно — он состоит всего из двух-трех операций. Первая операция: размер попавшегося полублока становится равен 32 бита, полубок проходит функцию расширения, на вход попадает 32 бита. Дальше мы по специальной несекретной таблице немного добавляем к 32 битам, превращая их в 48: некоторые биты дублируются и переставляются, такая гребеночка.

Потом мы его ксорим с раундовым ключом, размер которого — тоже 48 бит, и получаем 48-битное значение.
Затем оно попадает в набор функций, которые называются S-боксы и преобразуют каждый бит входа в четыре бита выхода. Следовательно, на выходе мы из 48 бит снова получаем 32 бита.

И наконец, окончательная перестановка P. Она опять перемешивает 32 бита между собой. Все очень несложно, раундовая функция максимально простая.

Самое интересное ее свойство заключается в указанных S-боксах: задумано очень сложное превращение 6 бит в 4. Если посмотреть на всю конструкцию, видно, что она состоит из XOR и пары перестановок. Если бы S-боксы были простыми, весь DES фактически представлял бы собой некоторый набор линейных преобразований. Его можно было бы представить как матрицу, на которую мы умножаем наш открытый текст, получая шифротекст. И тогда атака на DES была бы тривиальной: требовалось бы просто подобрать матрицу.

Вся нелинейность сосредоточена в S-боксах, подобранных специальным образом. Существуют разные анекдоты о том, как именно они подбирались. В частности, примерно через 10 лет после того, как DES был опубликован и стандартизован, криптографы нашли новый тип атак — дифференциальный криптоанализ. Суть атаки очень простая: мы делаем мелкие изменения в открытом тексте — меняя, к примеру, значение одного бита с 0 на 1 — и смотрим, что происходит с шифротекстом. Выяснилось, что в идеальном шифре изменение одного бита с 0 на 1 должно приводить к изменению ровно половины бит шифротекста. Выяснилось, что DES, хоть он и был сделан перед тем, как открыли дифференциальный криптоанализ, оказался устойчивым к этому типу атак. В итоге в свое время возникла очередная волна паранойи: мол, АНБ еще за 10 лет до открытых криптографов знало про существование дифференциального криптоанализа, и вы представляете себе, что оно может знать сейчас.

Анализу устройства S-боксов посвящена не одна сотня статей. Есть классные статьи, которые называются примерно так: особенности статистического распределения выходных бит в четвертом S-боксе. Потому что шифру много лет, он досконально исследован в разных местах и остается достаточно устойчивым даже по нынешним меркам.

56 бит сейчас уже можно просто перебрать на кластере машин общего назначения — может, даже на одном. И это плохо. Что можно предпринять?

Просто сдвинуть размер ключа нельзя: вся конструкция завязана на его длину. Triple DES. Очевидный ответ был таким: давайте мы будем шифровать наш блок несколько раз, устроим несколько последовательных шифрований. И здесь всё не слишком тривиально.

Допустим, мы берем и шифруем два раза. Для начала нужно доказать, что для шифрований k1 и k2 на двух разных ключах не существует такого шифрования на ключе k3, что выполнение двух указанных функций окажется одинаковым. Здесь вступает в силу свойство, что DES не является группой. Тому существует доказательство, пусть и не очень тривиальное.

Окей, 56 бит. Давайте возьмем два — k1 и k2. 56 + 56 = 112 бит. 112 бит даже по нынешним меркам — вполне приемлемая длина ключа. Можно считать нормальным всё, что превышает 100 бит. Так почему нельзя использовать два шифрования, 112 бит?

Одно шифрование DES состоит из 16 раундов. Сеть применяется 16 раз. Изменения слева направо происходят 16 раз. И он — не группа. Есть доказательство того, что не существует такого ключа k3, которым мы могли бы расшифровать текст, последовательно зашифрованный выбранными нами ключами k1 и k2.

Есть атака. Давайте зашифруем все возможные тексты на каком-нибудь ключе, возьмем шифротекст и попытаемся его расшифровать на всех произвольных ключах. И здесь, и здесь получим 2 56 вариантов. И где-то они сойдутся. То есть за два раза по 2 56 вариантов — плюс память для хранения всех расшифровок — мы найдем такую комбинацию k1 и k2, при которых атака окажется осуществимой.

Эффективная стойкость алгоритма — не 112 бит, а 57, если у нас достаточно памяти. Нужно довольно много памяти, но тем не менее. Поэтому решили — так работать нельзя, давайте будем шифровать три раза: k1, k2, k3. Конструкция называется Triple DES. Технически она может быть устроена по-разному. Поскольку в DES шифрование и дешифрование — одно и то же, реальные алгоритмы иногда выглядят так: зашифровать, расшифровать и снова расшифровать — чтобы выполнять операции в аппаратных реализациях было проще.

Наша обратная реализация Triple DES превратится в аппаратную реализацию DES. Это может быть очень удобно в разных ситуациях для задачи обратной совместимости.

Где применялся DES? Вообще везде. Его до сих пор иногда можно пронаблюдать для TLS, существуют cipher suite для TLS, использующие Triple DES и DES. Но там он активно отмирает, поскольку речь идет про софт. Софт легко апдейтится.

А вот в банкоматах он отмирал очень долго, и я не уверен, что окончательно умер. Не знаю, нужна ли отдельная лекция о том, как указанная конструкция устроена в банкоматах. Если коротко, клавиатура, где вы вводите PIN, — самодостаточная вещь в себе. В нее загружены ключи, и наружу она выдает не PIN, а конструкцию PIN-блок. Конструкция зашифрована — например, через DES. Поскольку банкоматов огромное количество, то среди них много старых и до сих пор можно встретить банкомат, где внутри коробки реализован даже не Triple DES, а обычный DES.

Однажды DES стал показывать свой возраст, с ним стало тяжело, и люди решили придумать нечто поновее. Американская контора по стандартизации, которая называется NIST, сказала: давайте проведем конкурс и выберем новый классный шифр. Им стал AES.

DES расшифровывается как digital encrypted standard. AES — advanced encrypted standard. Размер блока в AES — 128 бит, а не 64. Это важно с точки зрения криптографии. Размер ключа у AES — 128, 192 или 256 бит. В AES не используется сеть Фейстеля, но он тоже многораундовый, в нем тоже несколько раз повторяются относительно примитивные операции. Для 128 бит используется 10 раундов, для 256 — 14.

Сейчас покажу, как устроен каждый раунд. Первый и последний раунды чуть отличаются от стандартной схемы — тому есть причины.

Как и в DES, в каждом раунде AES есть свои раундовые ключи. Все они генерируются из ключа шифрования для алгоритма. В этом месте AES работает так же, как DES. Берется 128-битный ключ, из него генерируется 10 подключей для 10 раундов. Каждый подключ, как и в DES, применяется на каждом конкретном раунде.

Каждый раунд состоит из четырех довольно простых операций. Первый раунд — подстановка по специальной таблице.

В AES мы строим байтовую матрицу размером 4 на 4. Каждый элемент матрицы — байт. Всего получается 16 байт или 128 бит. Они и составляют блок AES целиком.

Вторая операция — побайтовый сдвиг.

Устроен он несложно, примитивно. Мы берем матрицу 4 на 4. Первый ряд остается без изменений, второй ряд сдвигается на 1 байт влево, третий — на 2 байта, четвертый — на 3, циклично.

Далее мы производим перемешивание внутри колонок. Это тоже очень несложная операция. Она фактически переставляет биты внутри каждой колонки, больше ничего не происходит. Можно считать ее умножением на специальную функцию.

Четвертая, вновь очень простая операция — XOR каждого байта в каждой колонке с соответствующим байтом ключа. Получается результат.

В первом раунде лишь складываются ключи, а три других операции не используются. В последнем раунде не происходит подобного перемешивания столбцов:

Дело в том, что это не добавило бы никакой криптографической стойкости и мы всегда можем обратить последний раунд. Решили не тормозить конструкцию лишней операцией.

Мы повторяем 4 описанных шага 10 раз, и на выходе из 128-битного блока снова получаем 128-битный блок.

Какие достоинства у AES? Он оперирует байтами, а не битами, как DES. AES намного быстрее в софтовых реализациях. Если сравнить скорость выполнения AES и DES на современной машине, AES окажется в разы быстрее, даже если говорить о реализации исключительно в программном коде.

Производители современных процессоров, Intel и AMD, уже разработали ассемблерные инструкции для реализации AES внутри чипа, потому что стандарт довольно несложный. Как итог — AES еще быстрее. Если через DES на современной машинке мы можем зашифровать, например, 1-2 гигабита, то 10-гигабитный AES-шифратор находится рядом и коммерчески доступен обычным компаниям.

Блочный алгоритм шифрует блок в блок. Он берет блок на 128 или 64 бита и превращает его в блок на 128 или 64 бита.

А что мы будем делать, если потребуется больше, чем 16 байт?

Первое, что приходит в голову, — попытаться разбить исходное сообщение на блоки, а блок, который останется неполным, дополнить стандартной, известной и фиксированной последовательностью данных.

Да, очевидно, побьем всё на блоки по 16 байт и зашифруем. Такое шифрование называется ECB — electronic code boot, когда каждый из блоков по 16 байт в случае AES или по 8 байт в случае DES шифруется независимо.
что такое пнд в криптографии. ab2e983d441f465bb3b2571120ebf31b. что такое пнд в криптографии фото. что такое пнд в криптографии-ab2e983d441f465bb3b2571120ebf31b. картинка что такое пнд в криптографии. картинка ab2e983d441f465bb3b2571120ebf31b. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.
Шифруем каждый блок, получаем шифротекст, складываем шифротексты и получаем полный результат.
что такое пнд в криптографии. f5ee97c28db14fdeb64f86173fcdf2b2. что такое пнд в криптографии фото. что такое пнд в криптографии-f5ee97c28db14fdeb64f86173fcdf2b2. картинка что такое пнд в криптографии. картинка f5ee97c28db14fdeb64f86173fcdf2b2. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.
Примерно так выглядит картинка, зашифрованная в режиме ECB. Даже если мы представим себе, что шифр полностью надежен, кажется, что результат менее чем удовлетворительный. В чем проблема? В том, что это биективное отображение. Для одинакового входа всегда получится одинаковый выход, и наоборот — для одинакового шифротекста всегда получится одинаковый открытый текст.

Надо бы как-нибудь исхитриться и сделать так, чтобы результат на выходе все время получался разным, в зависимости от местонахождения блока — несмотря на то, что на вход подаются одинаковые блоки шифротекста. Первым способом решения стал режим CBC.
что такое пнд в криптографии. 3c8869fdb5064faa97ba4e3b89dc1e02. что такое пнд в криптографии фото. что такое пнд в криптографии-3c8869fdb5064faa97ba4e3b89dc1e02. картинка что такое пнд в криптографии. картинка 3c8869fdb5064faa97ba4e3b89dc1e02. Информационная система любой организации содержит персональные данные (ПНд) о сотрудниках и клиентах, которые в соответствии с ФЗ № 152-ФЗ должны быть защищены.
Мы не только берем ключ и открытый текст, но и генерируем случайное число, которое не является секретным. Оно размером с блок. Называется оно инициализационным вектором.

При шифровании первого блока мы берем инициализационный вектор, складываем его по модулю 2 с открытым текстом и шифруем. На выходе — шифротекст. Дальше складываем полученный шифротекст по модулю 2 со вторым блоком и шифруем. На выходе — второй блок шифротекста. Складываем его по модулю 2 с третьим блоком открытого текста и шифруем. На выходе получаем третий блок шифротекста. Здесь видно сцепление: мы каждый следующий блок сцепляем с предыдущим.

В результате получится картинка, где всё, начиная со второго блока, равномерно размазано, а первый блок каждый раз зависит от инициализационного вектора. И она будет абсолютно перемешана. Здесь все неплохо.

Однако у CBC есть несколько проблем.

О размере блока. Представьте: мы начали шифровать и, допустим, у нас DES. Если бы DES был идеальным алгоритмом шифрования, выход DES выглядел бы как равномерно распределенные случайные числа длиной 64 бита. Какова вероятность, что в выборке из равномерно распределенных случайных чисел длиной 64 бита два числа совпадут для одной операции? 1/(2 64 ). А если мы сравниваем три числа? Давайте пока прервемся.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *