ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡΡ ΡΠΈΠ³ΡΡ. ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΈΠΌΠ΅Π΅Ρ ΡΡ ΠΆΠ΅ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½, ΡΡΠΎ ΠΈ Π΄Π»ΠΈΠ½Π°.
Π±ΡΠΊΠ²Π°ΠΌΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΡ Π²Π΅ΡΡΠΈΠ½.
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ Π΄Π»ΠΈΠ½ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½, ΠΎΠ±ΡΠ°Ρ ΡΠΎΡΠΌΡΠ»Π°:
Π€ΠΎΡΠΌΡΠ»Π° ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π΄Π»Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΠΠ‘:
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° (ΠΈΠ»ΠΈ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ
ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°), Π½ΡΠΆΠ½ΠΎ Π·Π½Π°ΡΡ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½Ρ.
Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π² ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅ΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ Π²ΡΠ΅ ΡΡΠΈ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ, ΡΠΎΡΠΌΡΠ»Π° ΡΠΏΡΠΎΡΠ°Π΅ΡΡΡ:
| |
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎ ΡΠ°ΠΊΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅:
Π³Π΄Π΅ Π° β Π΄Π»ΠΈΠ½Π° Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½Ρ.
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π½ΡΠΆΠ½ΠΎ Π·Π½Π°ΡΡ Π²ΡΠ΅Π³ΠΎ Π΄Π²Π΅ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½Ρ β ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Ρ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π΄Π²Π΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ (Π±ΠΎΠΊΠΎΠ²ΡΠ΅), Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ
ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎ ΡΠ°ΠΊΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅:
Π’ΠΎ Π΅ΡΡΡ, ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ Π΄Π»ΠΈΠ½ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΠΈ
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
Π£ΡΠΈΠΌΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π·Π½ΡΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π·Π½Π°Π½ΠΈΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ Π·Π°Π΄Π°Ρ.
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½.
Π’ΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ β ΡΡΠΎ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΈΠ³ΡΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· ΡΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ (Π²Π΅ΡΡΠΈΠ½), Π½Π΅ Π»Π΅ΠΆΠ°ΡΠΈΡ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ. ΠΡΠΈ ΡΠΎΡΠΊΠΈ ΠΏΠΎΠΏΠ°ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΡΡΠ΅ΠΌΡ ΠΎΡΡΠ΅Π·ΠΊΠ°ΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ (ΡΠ΅Π±ΡΠ°ΠΌΠΈ) ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΡΡΠΎΡΠΎΠΆΠ½ΠΎ! ΠΡΠ»ΠΈ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΡ ΠΏΠ»Π°Π³ΠΈΠ°Ρ Π² ΡΠ°Π±ΠΎΡΠ΅, Π½Π΅ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ ΠΊΡΡΠΏΠ½ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ (Π²ΠΏΠ»ΠΎΡΡ Π΄ΠΎ ΠΎΡΡΠΈΡΠ»Π΅Π½ΠΈΡ). ΠΡΠ»ΠΈ Π½Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π½Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΌΠΎΠΌΡ, Π·Π°ΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΡ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠΉ ΡΠΈΠ³ΡΡΡ. ΠΠ°ΠΆΠ΄Π°Ρ ΠΈΠ· ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΡ ΡΠΎΡΠΌΡΠ» ΠΎΠΏΠΈΡΠ°Π΅ΡΡΡ Π½Π° ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π°ΠΌ ΡΠΆΠ΅ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ.
Π‘ΠΏΠΎΡΠΎΠ±Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ
ΠΠΎ ΡΡΠ΅ΠΌ ΡΡΠΎΡΠΎΠ½Π°ΠΌ
ΠΡΠ»ΠΈ ΠΌΡ ΡΠΆΠ΅ Π·Π½Π°Π΅ΠΌ Π΄Π»ΠΈΠ½Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π±ΡΠ° ΡΠΈΠ³ΡΡΡ, ΡΠ°ΡΡΠ΅Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° Π±ΡΠ΄Π΅Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡΡ ΡΠ°ΠΊ:
Π³Π΄Π΅ a, b ΠΈ Ρ β ΡΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
Π ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ Π½Π°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° (Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π΄Π²Π° ΡΠ΅Π±ΡΠ° ΡΠ°Π²Π½Ρ), ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
Π³Π΄Π΅ a β ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΠ³ΡΡΡ, Π° b ΠΈ Ρ β ΡΠ°Π²Π½ΡΠ΅ ΡΠ΅Π±ΡΠ°.
Π’ΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΌΠΎΠΆΠ΅Ρ ΡΠ°ΠΊΠΆΠ΅ Π±ΡΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠΌ (ΠΊΠΎΠ³Π΄Π° Π²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ). Π’ΠΎΠ³Π΄Π° P Π±ΡΠ΄Π΅ΠΌ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΡΠ°ΡΡΠ΅ΡΠ°ΠΌΠΈ:
Π³Π΄Π΅ a β ΡΡΠΎ Π»ΡΠ±Π°Ρ ΡΡΠΎΡΠΎΠ½Π° ΡΠΈΠ³ΡΡΡ.
ΠΠΎ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΈ ΡΠ°Π΄ΠΈΡΡΡ Π²ΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ
ΠΠΎΠ³Π΄Π° Π½Π°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΠΏΠ»ΠΎΡΠ°Π΄Ρ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈ ΡΠ°Π΄ΠΈΡΡ Π²ΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ Π² Π½Π΅Π³ΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΡΠ°ΡΡΠ΅Ρ P Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
Π³Π΄Π΅ S β ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΠΈΠ³ΡΡΡ, r β ΡΠ°Π΄ΠΈΡΡ Π²ΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ Π² Π½Π΅Π΅ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΠΎ Π΄Π²ΡΠΌ ΡΡΠΎΡΠΎΠ½Π°ΠΌ ΠΈ ΡΠ³Π»Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ
Π’Π°ΠΊ ΠΊΠ°ΠΊ Π½Π°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ΅Π½ ΡΠ³ΠΎΠ» ΠΈ Π΄Π²Π΅ ΡΡΠΎΡΠΎΠ½Ρ, ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΠΎΠ½ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡΠΈ ΡΡΠ΅ΡΡΡ ΡΡΠΎΡΠΎΠ½Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΏΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΠ΅ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ². Π ΠΏΠΎΡΠΎΠΌ ΡΠΆΠ΅ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΡΠΌΠΌΡ Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΠ΅Π±Π΅Ρ ΡΠΈΠ³ΡΡΡ.
Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ² Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
Π³Π΄Π΅ Ξ± β ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΉ ΡΠ³ΠΎΠ».
Π’ΠΎΠ³Π΄Π° ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° Π²ΡΠ΅ΠΉ ΡΠΈΠ³ΡΡΡ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅:
ΠΠΎ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Π΅ ΠΈ Π²ΡΡΠΎΡΠ΅ (Π΄Π»Ρ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ)
ΠΠΎΠ·Π²ΡΠ°ΡΠ°ΡΡΡ ΠΊ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π²ΡΠΏΠΎΠΌΠΈΠ½Π°Π΅ΠΌ, ΡΡΠΎ Π²ΡΡΠΎΡΠ°, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½Π°Ρ ΠΊ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈΠ· ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ Π²Π΅ΡΡΠΈΠ½Ρ, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ Π²ΡΡΠΎΡΠΎΠΉ, Π±ΠΈΡΡΠ΅ΠΊΡΡΠΈΡΠΎΠΉ ΠΈ ΠΌΠ΅Π΄ΠΈΠ°Π½ΠΎΠΉ. ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΠΎΠ±Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ½Π° ΠΎΠ±ΡΠ°Π·ΡΠ΅Ρ, ΡΠ°Π²Π½Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ.
Π€ΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° Π½Π°ΡΠ΅Π³ΠΎ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π±ΡΠ΄Π΅Ρ ΠΎΠΏΠΈΡΠ°ΡΡΡΡ Π½Π° ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΡΠ°Π³ΠΎΡΠ°. ΠΡΡΡΡ 1/2 ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ (Ρ) = d. Π’ΠΎΠ³Π΄Π°:
Π³Π΄Π΅ a β ΡΡΠΎΡΠΎΠ½Π° ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ, h β Π²ΡΡΠΎΡΠ° ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈ ΠΊΠ°ΡΠ΅Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ.
ΠΠ΅ Π·Π°Π±ΡΠ²Π°Π΅ΠΌ, ΡΡΠΎ d β ΡΡΠΎ Π»ΠΈΡΡ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΠΏΠΎΡΡΠΎΠΌΡ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π½ΡΠΆΠ½ΠΎ Π±ΡΠ΄Π΅Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° 2.
ΠΠΎ Π΄Π²ΡΠΌ ΠΊΠ°ΡΠ΅ΡΠ°ΠΌ (Π΄Π»Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ)
ΠΡΠ΅ ΡΠ°Π· Π²ΡΠΏΠΎΠΌΠ½ΠΈΠΌ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΡΠ°Π³ΠΎΡΠ° Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ (ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ Π΅Π΅ Π±ΡΠΊΠ²ΠΎΠΉ Ρ).
Π³Π΄Π΅ a ΠΈ b β ΠΊΠ°ΡΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ c Π² ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ
ΠΠ»Ρ ΡΡΠ΅Π½ΠΈΡΠΎΠ²ΠΊΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π·Π½Π°Π½ΠΈΠΉ, ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Π½Π° ΠΏΠΎΠΈΡΠΊ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΠ°Π΄Π°ΡΠ° β1
ΠΠ°ΠΊΠΎΠΉ P ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π΅ΡΠ»ΠΈ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ 6 ΡΠΌ, 7 ΡΠΌ ΠΈ 3 ΡΠΌ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π² ΡΠΎΡΠΌΡΠ»Ρ P = a+b+c ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ: P = 6+7+3=16 ΡΠΌ.
ΠΠ°Π΄Π°ΡΠ° β2
ΠΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½ΠΎ 6 ΡΠΌ, Π° Π΅Π³ΠΎ Π±ΠΎΠΊΠΎΠ²Π°Ρ ΡΡΠΎΡΠΎΠ½Π° β 4 ΡΠΌ. ΠΠ°ΠΉΡΠΈ P ΡΠΈΠ³ΡΡΡ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ»Ρ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ»ΡΡΠ°Ρ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ ΡΠΎΡΠΌΡΠ»Π° P=a+2b, ΠΏΠΎΠ΄ΡΡΠ²Π»ΡΠ΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ: \(P=6+4\times2 = 14\) ΡΠΌ.
ΠΠ°Π΄Π°ΡΠ° β3
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ°Π΄Π°ΡΠ° β4
ΠΠ°Π½ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ. ΠΠ°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½Π° Π΅Π³ΠΎ Π±ΠΎΠΊΠΎΠ²Π°Ρ ΡΡΠΎΡΠΎΠ½Π° (4 ΡΠΌ) ΠΈ Π²ΡΡΠΎΡΠ°, ΠΎΠΏΡΡΠ΅Π½Π½Π°Ρ ΠΊ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ (2 ΡΠΌ). ΠΡΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡΡ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ°Π΄Π°ΡΠ° β5
ΠΠ°Π½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ Ρ ΠΊΠ°ΡΠ΅ΡΠ°ΠΌΠΈ 5 ΡΠΌ ΠΈ 7 ΡΠΌ. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡΡ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
Π ΡΠΎΡΠΌΡΠ»Ρ \(P=\sqrt+a+b\) ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ: \(P=\sqrt<5^2+7^2>+5+7 = \sqrt<74>+12\) ΡΠΌ.
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡΠΎΠΌ ΠΏΡΠΈΠ½ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π΄Π»ΠΈΠ½Ρ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π·Π°Π³Π»Π°Π²Π½ΠΎΠΉ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ P. ΠΠΎΠ΄ Β«PΒ» ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΏΠΈΡΠ°ΡΡ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΈΠΌΠΈ Π±ΡΠΊΠ²Π°ΠΌΠΈ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠΈΠ³ΡΡΡ, ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ Π² Π·Π°Π΄Π°ΡΠ°Ρ ΠΈ Ρ ΠΎΠ΄Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ.
ΠΠ°ΠΆΠ½ΠΎ, ΡΡΠΎΠ±Ρ Π²ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π±ΡΠ»ΠΈ ΠΏΠ΅ΡΠ΅Π΄Π°Π½Ρ Π² ΠΎΠ΄Π½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ Π΄Π»ΠΈΠ½Ρ, ΠΈΠ½Π°ΡΠ΅ ΠΌΡ Π½Π΅ ΡΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠΎΠ΄ΡΡΠΈΡΠ°ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ. ΠΠΎΡΡΠΎΠΌΡ Π΄Π»Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ Π²ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΊ ΠΎΠ΄Π½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ.
Π ΡΠ΅ΠΌ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ:
ΠΠ°ΠΊ ΡΠ·Π½Π°ΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΊΠ°ΠΊΠΈΠ΅ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ, ΠΈ ΠΏΡΠΈ ΠΊΠ°ΠΊΠΈΡ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ ΠΈΡΡ ΠΎΠ΄Π½ΡΡ Π΄Π°Π½Π½ΡΡ ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ.
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ ΡΡΠΈ ΡΡΠΎΡΠΎΠ½Ρ, ΡΠΎ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π΅Π½ ΠΈΡ ΡΡΠΌΠΌΠ΅. ΠΡΠΎΡ ΡΠΏΠΎΡΠΎΠ± ΠΏΡΠΎΡ ΠΎΠ΄ΡΡ Π²ΠΎ Π²ΡΠΎΡΠΎΠΌ ΠΊΠ»Π°ΡΡΠ΅.
P = a + b + c, Π³Π΄Π΅ a, b, c β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ.
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΈ ΡΠ°Π΄ΠΈΡΡ Π²ΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ:
P = 2 * S : r, Π³Π΄Π΅ S β ΠΏΠ»ΠΎΡΠ°Π΄Ρ, r β ΡΠ°Π΄ΠΈΡΡ Π²ΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ Π΄Π²Π΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΈ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ, Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΠΊ:
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΠΎΠ΄Π½Π° ΡΡΠΎΡΠΎΠ½Π° Π² ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅ΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅:
P = 3 * a, Π³Π΄Π΅ a β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ.
ΠΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ Π² ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅ΠΉ ΡΠΈΠ³ΡΡΠ΅ ΡΠ°Π²Π½Ρ.
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Π° Π±ΠΎΠΊΠΎΠ²Π°Ρ ΡΡΠΎΡΠΎΠ½Π° ΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅:
P = 2 * a + b, Π³Π΄Π΅ a β Π±ΠΎΠΊΠΎΠ²Π°Ρ ΡΡΠΎΡΠΎΠ½Π°, b β ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅.
ΠΠΎΠΊΠΎΠ²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ Π² ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠΉ ΡΠΈΠ³ΡΡΠ΅ ΡΠ°Π²Π½Ρ.
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Π° Π±ΠΎΠΊΠΎΠ²Π°Ρ ΡΡΠΎΡΠΎΠ½Π° ΠΈ Π²ΡΡΠΎΡΠ° Π² ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅:
P = 2 * (β a 2 + h 2 ) + 2 * a, Π³Π΄Π΅ a β Π±ΠΎΠΊΠΎΠ²Π°Ρ ΡΡΠΎΡΠΎΠ½Π°, h β Π²ΡΡΠΎΡΠ°.
ΠΡΡΠΎΡΠΎΠΉ ΠΏΡΠΈΠ½ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΎΡΡΠ΅Π·ΠΎΠΊ, ΠΊΠΎΡΠΎΡΡΠΉ Π²ΡΡΠ΅Π» ΠΈΠ· Π²Π΅ΡΡΠΈΠ½Ρ ΠΈ ΠΎΠΏΡΡΡΠΈΠ»ΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅. Π ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠΉ ΡΠΈΠ³ΡΡΠ΅ Π²ΡΡΠΎΡΠ° Π΄Π΅Π»ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ.
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ ΠΊΠ°ΡΠ΅ΡΡ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅:
P = β a 2 + b 2 + (a + b), Π³Π΄Π΅ a, b β ΠΊΠ°ΡΠ΅ΡΡ.
ΠΠ°ΡΠ΅Ρ β ΠΎΠ΄Π½Π° ΠΈΠ· Π΄Π²ΡΡ
ΡΡΠΎΡΠΎΠ½, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ±ΡΠ°Π·ΡΡΡ ΠΏΡΡΠΌΠΎΠΉ ΡΠ³ΠΎΠ».
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ ΠΊΠ°ΡΠ΅Ρ ΠΈ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π° Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅:
ΠΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π° β ΡΡΠΎΡΠΎΠ½Π°, ΠΊΠΎΡΠΎΡΠ°Ρ Π»Π΅ΠΆΠΈΡ Π½Π°ΠΏΡΠΎΡΠΈΠ² ΠΏΡΡΠΌΠΎΠ³ΠΎ ΡΠ³Π»Π°.
Π‘ΠΊΠ°ΡΠ°ΡΡ ΠΎΠ½Π»Π°ΠΉΠ½ ΡΠ°Π±Π»ΠΈΡΡ
Π£ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ³ΡΡΡ ΠΌΠ½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΡΠ» β Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ Π²ΡΠ΅ ΡΡΠ°Π·Ρ Π±ΡΠ²Π°Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎ. Π ΡΡΠΎΠΌ Π΄Π΅Π»Π΅ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΡΠ΅Π³ΡΠ»ΡΡΠ½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ ΠΈ ΡΠ°ΡΡΡΠΉ ΠΏΡΠΎΡΠΌΠΎΡΡ ΡΠΎΡΠΌΡΠ». ΠΠΎΠΆΠ½ΠΎ ΡΠ°ΡΠΏΠ΅ΡΠ°ΡΠ°ΡΡ ΡΡΡ ΡΠ°Π±Π»ΠΈΡΡ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ, ΠΊΠ°ΠΊ Π·Π°ΠΊΠ»Π°Π΄ΠΊΡ Π² ΡΠ΅ΡΡΠ°Π΄ΠΊΠ΅ ΠΈΠ»ΠΈ ΡΡΠ΅Π±Π½ΠΈΠΊΠ΅, ΠΈ ΠΎΠ±ΡΠ°ΡΠ°ΡΡΡΡ ΠΊ Π½Π΅ΠΉ ΠΏΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ.
ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°: ΡΠΎΡΠΌΡΠ»Π° ΠΈ Π·Π°Π΄Π°ΡΠΈ
Π Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΈ ΠΌΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ, ΠΊΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡΠΈΡΠ°ΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ.
Π€ΠΎΡΠΌΡΠ»Π° Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ (P) Π»ΡΠ±ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½ΡΠ΅ΡΡΡ ΡΡΠΌΠΌΠ΅ Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½.
P = a + b + c
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
Π Π°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ, Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π΄Π²Π΅ Π±ΠΎΠΊΠΎΠ²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ (ΠΏΡΠΈΠΌΠ΅ΠΌ ΠΈΡ Π·Π° b). Π‘ΡΠΎΡΠΎΠ½Π° a, ΠΈΠΌΠ΅ΡΡΠ°Ρ ΠΎΡΠ»ΠΈΡΠ½ΡΡ ΠΎΡ Π±ΠΎΠΊΠΎΠ²ΡΡ Π΄Π»ΠΈΠ½Ρ, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ ΡΠ°ΠΊ:
P = a + 2b
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
Π Π°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠΌ ΠΈΠ»ΠΈ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ, Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ (ΠΏΡΠΈΠΌΠ΅ΠΌ Π΅Π΅ Π·Π° a). ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°ΠΊΠΎΠΉ ΡΠΈΠ³ΡΡΡ Π²ΡΡΠΈΡΠ»ΡΠ΅ΡΡΡ ΡΠ°ΠΊ:
P = 3a
ΠΡΠΈΠΌΠ΅ΡΡ Π·Π°Π΄Π°Ρ
ΠΠ°Π΄Π°Π½ΠΈΠ΅ 1
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π΅ΡΠ»ΠΈ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ: 3, 4 ΠΈ 5 ΡΠΌ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π² ΡΠΎΡΠΌΡΠ»Ρ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ ΠΏΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ Π·Π°Π΄Π°ΡΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
P = 3 ΡΠΌ + 4 ΡΠΌ + 5 ΡΠΌ = 12 ΡΠΌ.
ΠΠ°Π΄Π°Π½ΠΈΠ΅ 2
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π΅ΡΠ»ΠΈ Π΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π²Π½ΡΠ΅ΡΡΡ 10 ΡΠΌ, Π° Π±ΠΎΠΊΠΎΠ²Π°Ρ ΡΡΠΎΡΠΎΠ½Π°- 8 ΡΠΌ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΠ°ΠΊ ΠΌΡ Π·Π½Π°Π΅ΠΌ, Π±ΠΎΠΊΠΎΠ²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½Ρ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ:
P = 10 ΡΠΌ + 2 β
8 ΡΠΌ = 26 ΡΠΌ.
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡΡ
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΠ°ΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ? ΠΠ°Π³Π»Π°Π²Π½ΠΎΠΉ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ P. ΠΠΎΠ΄ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ P ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΏΠΈΡΠ°ΡΡ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΈΠΌΠΈ Π±ΡΠΊΠ²Π°ΠΌΠΈ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠΈΠ³ΡΡΡ, ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ Π² Π·Π°Π΄Π°ΡΠ°Ρ ΠΏΠΎ Ρ ΠΎΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
Π ΡΠ΅ΠΌ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ? Π ΡΠ΅Ρ ΠΆΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΡΡΠΎ ΠΈ Π΄Π»ΠΈΠ½Π° β Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅ΡΡ, ΡΠ°Π½ΡΠΈΠΌΠ΅ΡΡ, ΠΌΠ΅ΡΡ, ΡΡΡ, Π΄ΡΠΉΠΌ, Π»ΠΎΠΊΠΎΡΡ ΠΈ Π΄Ρ.
ΠΡΠ»ΠΈ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π·Π°Π΄Π°ΡΠΊΠΈ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½ ΠΏΠ΅ΡΠ΅Π΄Π°Π½Ρ Π² ΡΠ°Π·Π½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ Π΄Π»ΠΈΠ½Ρ, ΠΌΡ Π½Π΅ ΡΠΌΠΎΠΆΠ΅ΠΌ ΡΠ·Π½Π°ΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡΡ. ΠΠ»Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ Π²ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² ΠΎΠ΄Π½Ρ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ.
Π€ΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°
ΠΠ°ΠΊ ΠΌΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ ΡΠ·Π½Π°Π»ΠΈ, ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. Π Π·Π½Π°ΡΠΈΡ, ΡΡΠΎΠ±Ρ Π΅Π³ΠΎ Π½Π°ΠΉΡΠΈ, Π½Π°ΠΌ Π½Π°Π΄ΠΎ Π·Π½Π°ΡΡ Π΄Π»ΠΈΠ½Ρ ΡΡΠΈΡ ΡΡΠΎΡΠΎΠ½. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ, Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΡΠΈΠ³ΡΡ.
Π Π°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ
Π£ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ. Π Π·Π½Π°ΡΠΈΡ, ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΊΠ°ΠΊ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ Π½Π° ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ, Ρ. Π΅. Π½Π° 3.
P = 3 β a, Π³Π΄Π΅ a β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ.
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ Π»ΡΠ±ΠΎΠ³ΠΎ Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ΅ΠΌ ΠΆΠ΅ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ: ΡΠΌΠ½ΠΎΠΆΠΈΠ² Π΄Π»ΠΈΠ½Ρ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½Ρ Π½Π° ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΠΈ ΡΠΎΠΌΠ±Π° Π²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ, Π° Π·Π½Π°ΡΠΈΡ, ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ P = 4 β a, Π³Π΄Π΅ a β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ.
Π ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ n-ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π±ΡΠ΄Π΅Ρ ΡΠ°ΠΊΠ°Ρ: P = n β a, Π³Π΄Π΅ a β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ, n β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΡΠΎΡΠΎΠ½.
ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ
Π£ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ, Π° Π·Π½Π°ΡΠΈΡ, Π½Π°ΠΉΡΠΈ ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ Π»Π΅Π³ΠΊΠΎ, Π·Π½Π°Ρ Π΄Π²Π΅ ΡΠΎΡΠ΅Π΄Π½ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ.
P = 2 β (a + b), Π³Π΄Π΅ a β ΠΎΠ΄Π½Π° ΡΡΠΎΡΠΎΠ½Π°, b β ΡΠΎΡΠ΅Π΄Π½ΡΡ ΡΡΠΎΡΠΎΠ½Π°.
ΠΠΊΡΡΠΆΠ½ΠΎΡΡΡ
Π£ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π½Π΅Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΡΠΎ Π½Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ. ΠΠΎ Ρ Π½Π΅Π΅ Π΅ΡΡΡ Π΄Π»ΠΈΠ½Π°, ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ, Π·Π½Π°Ρ ΡΠ°Π΄ΠΈΡΡ. ΠΠ»ΠΈΠ½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ β ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΈ Π½Π° Π΄Π²Π° ΡΠ°Π΄ΠΈΡΡΠ° ΠΈΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΈ Π½Π° Π΄ΠΈΠ°ΠΌΠ΅ΡΡ.
L = d β Ο = 2 β r β Ο, Π³Π΄Π΅ d β Π΄ΠΈΠ°ΠΌΠ΅ΡΡ, r β ΡΠ°Π΄ΠΈΡΡ, Ο β ΡΡΠΎ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ Π²ΡΡΠ°ΠΆΠ°Π΅Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΊ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΡ, ΠΎΠ½Π° ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°Π²Π½Π° 3,14.
ΠΠΎΠΆΠ½ΠΎ Π²ΡΡΡΠΈΡΡ Π²ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, Π° ΠΌΠΎΠΆΠ½ΠΎ, Π·Π°ΠΏΠΎΠΌΠ½ΠΈΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎ ΡΡΠΌΠΌΠ΅ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½, ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π· ΠΏΡΠΎΡΠ²Π»ΡΡΡ ΡΠΌΠ΅ΠΊΠ°Π»ΠΊΡ ΠΈ Π²ΡΡΠΈΡΠ»ΡΡΡ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ, ΠΊΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡ!
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ
Π Π°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ 40 ΡΠΌ, Π΄Π»ΠΈΠ½Π° Π΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 6 ΡΠΌ. ΠΠ°ΠΊΡΡ Π΄Π»ΠΈΠ½Ρ Π±ΡΠ΄ΡΡ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π΅ Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ?
ΠΡΠ²Π΅Ρ: Π΄Π²Π΅ Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ ΠΏΠΎ 17 ΡΠΌ.
Π Π°Π΄ΠΈΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π²Π΅Π½ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΠΏΡΡΠΈΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠΎ ΡΡΠΎΡΠΎΠ½ΠΎΠΉ 4 ΡΠΌ. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΡΠ΅ Π±ΠΎΠ»ΡΡΠ΅ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ Π·Π°Π΄Π°Π½ΠΈΠΉ β Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠΊΠΎΠ»Π΅ Skysmart!