что такое перфорация в бурении
Перфорация скважин
C. A. Ловля.
Полезное
Смотреть что такое «Перфорация скважин» в других словарях:
ПЕРФОРАЦИЯ — (ново лат., от лат. perforare просверливать насквозь). Пробуравление, протыкание. Акушерская операция, состоящая в раздроблении черепа младенца и его опорожнении, с целью дать возможность свободно пройти головке тазовую полость. Словарь… … Словарь иностранных слов русского языка
Капитальный ремонт скважин — 15. Капитальный ремонт скважин комплекс работ по восстановлению работоспособности скважин и повышению нефтеотдачи пластов, промышленной, экологической безопасности и охраны недр, в том числе: восстановление технических характеристик обсадных… … Официальная терминология
ИССЛЕДОВАНИЯ СКВАЖИН ГЕОФИЗИЧЕСКИЕ — проводятся с целью: 1) изучения геол. разреза и выявления полезных рскопаемых на основании различия и характерных особенностей физ. свойств г. п., нефте и газоносных пластов, углей и руд. Эти исследования получили назв. каротаж от carotter (фр.,… … Геологическая энциклопедия
Гидропескоструйная перфорация — (a. hydrosand blast perforation of borehole; н. Wassersandstrahlperforierung der Bohrlocher; ф. perforation des trous а l aide de la sableuse; и. perforacion hidraulica de sondeos) создание каналов в эксплуатац. колонне, цем. камне и… … Геологическая энциклопедия
Китайская Национальная Нефтегазовая корпорация — (CNPC) Китайская Национальная Нефтегазовая корпорация это одна из крупнейших нефтегазовых компаний мира Китайская Национальная Нефтегазовая корпорация занимается добычей нефти и газа, нефтехимическим производством, продажей нефтепродуктов,… … Энциклопедия инвестора
Горная промышленность — горнодобывающая промышленность, комплекс отраслей производства по разведке месторождении полезных ископаемых, их добыче из недр земли и первичной обработке обогащению. Г. п. делится на след. основные группы: 1) топливодобывающую (нефтяная … Большая советская энциклопедия
Пулевые перфораторы — см. Перфорация скважин. Горная энциклопедия. М.: Советская энциклопедия. Под редакцией Е. А. Козловского. 1984 1991 … Геологическая энциклопедия
Бурение — Общая схема буровой установки: 1 буровое долото; 2 УБТ; 3 бурильные трубы; 4 кондуктор; 5 устьевая шахта; 6 противовыбросовое устройства; 7 пол буровой установки; 8 буровой ротор; 9 … Википедия
Методы перфорации и торпедирования скважин
По окончании бурения нефтяной или газовой скважины стенки ее закрепляют обсадными трубами; в интервалах залегания продуктивных (нефтегаз
По окончании бурения нефтяной или газовой скважины стенки ее закрепляют обсадными трубами; в интервалах залегания продуктивных (нефтегазоносных) и водоносных пластов колонну цементируют.
При этом нефтеносные и газоносные пласты оказываются перекрытыми обсадными трубами и цементным кольцом, и приток жидкости в такую скважину невозможен, пока не будут созданы условия для сообщения продуктивного пласта со скважиной.
Для создания возможности притока нефти и газа из пласта в обсадной колонне и окружающем ее цементном кольце против нефтеносного (газоносного) пласта создают ряд каналов (отверстий), обеспечивающих сообщение между пластом и скважиной: по этим каналам нефть и газ поступают в скважину.
Как правило, отверстия в колонне и цементном кольце создают путем прострела. Этот процесс называют перфорацией колонны, а аппараты, при помощи которых производится прострел, перфораторами.
Их спускают в скважину на каротажном кабеле.
Перфорацию применяют также для вскрытия заводняемых пластов в нагнетательных скважинах, для проведения изоляционных работ и после них: при переходе на другие горизонты т. д.
Существуют 4 способа перфорации:
— пулевая,
— торпедная,
— кумулятивная,
— пескоструйная.
Пулевая перфорация.
Торпедная перфорация
Кумулятивная перфорация
Гидропескоструйная перфорация
основана на использовании абразивного и гидромониторного действия струи жидкости (воды, нефти) со взвешенным в ней песком, выходящим под высоким давлением из узкого отверстия (сопла).
Такая струя в течение нескольких минут создает в обсадной трубе, цементном кольце и породе глубокий канал, обеспечивающий надежное сообщение между скважиной и пластом.
Аппарат спускают в скважину на насосно-компрессорных трубах, по которым подается под высоким давлением жидкость с песком.
Вытекая из сопел с большой скоростью, достигающей нескольких сот метров в секунду, жидкость с песком пробивает эксплуатационную колонну, цементное кольцо и внедряется в породу на глубину до 1 м.
В процессе перфорации под действием абразивной струи жидкости (вверх или вниз вдоль ствола скважины) может образоваться щелевой канал или (при круговом вращении струи) обрезаться колонна по кольцу, что необходимо, например, для извлечения части обсадной колонны.
Торпеда кроме заряда взрывчатого вещества содержит средства для взрыва:
Иногда торпедирование применяют с целью удаления песчаных пробок, образовавшихся в стволе скважины, очистки призабойной зоны от глинистых осадков, очистки фильтра, пробивания окна в обсадной колонне для бурения нового ствола и т. д.
Оборудование и технология для глубокой перфорации скважин
Перфобуры выполнены в одно-, двух- или многосекционном вариантах. Они (рисунок 2) состоят из следующих основных узлов: труба-толкатель диаметром 50 мм, соединенная сверху с переливным клапаном, а внизу – с размещенными в трубном корпусе поворотным узлом и направляющим переходником, связанным посредством гидротолкателя и гибкой трубы с криволинейным специальным двухсекционным винтовым двигателем Д-42 (либо Д-43) и долотом типа PDC. Снизу к трубному корпусу подсоединены уипсток (отклонитель) и якорь, работающий с опорой на забой (или тяжелый низ).
Рисунок 2 – Конструктивная схема перфобура ПБ50-10-140
Известные способы перфорации обеспечивают глубину каналов: 90-120 мм при сверлящей; 400-600 мм при кумулятивной и гидропескоструйной перфорациях, а предлагаемым перфобуром – от 5000 до 40000 мм.
В компоновку перфобура включен инклинометрический регистратор положения КНБК (рисунок 3), автономного принципа действия (разработчик НПФ ВНИИГИС – 3ТС).
Рисунок 3
На перфобур разработан технический проект с рабочей чертежной документацией. Работоспособность отдельных узлов перфобура апробированы на других технологиях (в КНБК колтюбингового комплекса КМ4001 при опытном бурении горизонтальных скважин) и лабораторном стенде (рисунок 4).
Так как предлагаемая технология позволит создавать перфорационные каналы в 20-30 раз большей длинны, чем любой из существующих методов перфорации, то, естественно, увеличивается и площадь поверхности зоны фильтрации, что приведет к повышению среднесуточного дебита. Это позволит эксплуатировать скважины в «щадящем» режиме при более высоком коэффициенте их продуктивности. Тем самым, заметно снизятся пескопроявления, темпы образования «воронок» нефтеводяных контактов и технологических отложений в ПЗП и колонне насосно-компрессорных труб. Вследствие этого сократятся затраты времени и материалов на вызов притока нефти из пласта, ремонт скважин и будет получен доход от дополнительно добытой нефти.
При выборе параметров устройства для создания осевой нагрузки на долото были оценены потери на трение в перфорационном канале. Для чего проводились соответствующие расчеты потерь на трение бурильной колонны (совместно с Ляговым И.А. – ст. гр. МП-06-02 УГНТУ) на участках набора кривизны различного радиуса и на наклонных слабоискривленных участках перфорационного канала различной протяженности. Профиль перфорационного канала схематично представлен на рисунке 5.
Коэффициент трения (сопротивления движению) в случае поступательного движения колонны в стволе скважины принимался μ =0,24…0,7 (для поверхности горной породы, смоченной водой).
Потери осевой нагрузки на наклонных слабоискривленных участках канала соответствуют величине [2]:
ΔРН = q Lн μ sinα, (1)
где Lн– длина наклонного слабоискривленного участка перфорационного канала; q – удельный вес гибкой трубы; α– зенитный угол скважины.
Дифференциальное уравнение изогнутой оси перфорационной КНБК с забойным двигателем будет иметь вид: (4)
где P – осевая нагрузка на долото, до Р=6000Н (для двигателя Д43); Q – отклоняющая сила; E•1 – изгибная жесткость турбобура (определялась экспериментально); q1 – поперечная составляющая от собственного веса единицы длины КНБК и винтового двигателя: q1 = qВ •sinα, где qВ – вес единицы длины КНБК винтового двигателя в промывочной жидкости; α – зенитный угол скважины; Rk – реакция стенки скважины. Решение уравнения (4) находится в виде: (5)
где C1 и C2 постоянные интегрирования;
Выбраны следующие граничные условия [1]:
при x=0, y=0, ,
; при x=lk, y=r,
,
где lk – расстояние от долота до точки касания винтового двигателя стенки скважины.
Подставляя граничные условия в выражение (4), получим систему уравнений:
(6)
Решая систему относительно Q, С1 и С2, получим
(7)
(8)
Сопоставляя полученное выражение и уравнение (7), получаем
(10)
Уравнение (10) использовалось для определения расстояния от долота до точки касания колонны со стенками скважины lk,решая данное уравнение относительно q, получим:
Полученное выражение устанавливает взаимосвязь зенитного угла перфорационного канала и расстояния до точки касания перфорационной компоновки со стенкой канала.
В результате расчетов получены кривые изгибающих моментов, действующих на перфорационную компоновку, которые показали на их соизмеримость с крутящим моментом двигателя, исходя из чего подбиралось оборудование КНБК (рисунок 7).
Рисунок 9
Рисунок 10
Сд.пр. =
Автор: Калинин О. А. – студент гр. МП-03-02, Научные руководители – д.т.н. Лягов А. В., к.т.н. Шамов Н. А., г. Уфа, Уфимский государственный нефтяной технический университет
Виды перфорации при бурении нефтяных скважин
После спуска эксплуатационной колонны в интервале продуктивного пласта необходимо создать каналы – связь пласта с внутренним пространством труб в скважине. Это можно сделать, если прорезать отверстия в колонне, цементном камне и породе пласта. Потом по этим каналам из пласта будет поступать продукт: нефть, газ, газовый конденсат, вода. Перфорация – это и есть создание таковых каналов.
Из существующих видов перфорации нефтесервисные компании в основном пользуются этими 3 способами создания сообщения скважины с пластом:
Перфорация с использованием энергии взрыва
Перед спуском эксплуатационной колонны геофизический отряд проводит на скважине ГИС (геолого-исследовательские работы). На каротажном кабеле в скважину опускают приборы, которые записывают полную информацию: электрическое сопротивление пластов, наличие и профиль каверн, азимут и углы отклонения, определяют интервал продуктивного пласта, а также другие работы для составления точного профиля скважины.
Повторное определение интервала перфорации проводят после спуска и цементирования колонны. Затем готовят скважину к перфорации. Если это куст, то буровую установку двигают к точке бурения новой скважины. Устанавливают передвижную самоходную установку для выполнения перфорации и вызова притока из пласта. Установка имеет вышку для спуска насосно-компрессорных труб (НКТ), подъемник и гидравлический насос.
Гидропескоструйная перфорация
Она имеет преимущество перед взрывной перфорацией:
Специально оборудованная труба с несколькими соплами (насадки, устойчивые к воздействию абразивной струи) спускается в скважину на НКТ. На сопла по трубам подается абразивная жидкость с содержанием песка. Труба внизу имеет седло для посадки шара. После установки сопла в нужный интервал внутрь НКТ бросают шар, который, достигнув седла, перекрывает поток и направляет его через сопла. Струя режет колонну, цемент и породу пласта, делая глубокие до 0,5 метра каналы.
Гидромеханическая прорезка вертикальных щелей в колонне
Этот метод применяют при вторичной эксплуатации месторождений. В скважину на НКТ спускают оборудование для прорезки вертикальных щелей в колонне напротив продуктивного пласта.При создании давления в трубах выдвигаются режущие диски, которые упираются в стенку колонны. Выполняя возвратно-поступательные движения вверх-вниз, диски прорезают щели. Над дисками есть промывочные отверстия с гидромониторами, струя, попадая в щель, разрезает цементный камень и проникает глубоко в пласт. Так улучшается проницаемость пласта и дебит скважины.
К гидромеханической перфорации можно отнести вырезку бокового окна:
Это основные виды перфораций скважин. Каким способом и оборудованием она будет выполнена зависит от конкретных геологических условий, плана работ, утвержденного Заказчиком.
НОВАЦИОННАЯ ТЕХНОЛОГИЯ ПЕРФОРАЦИИ СКВАЖИН – КОМПЛЕКСНАЯ ПЛАСТИЧЕСКАЯ ПЕРФОРАЦИЯ
На месторождениях ОАО «Томскнефть» ВНК технология применяется с 2005 года, общий объем выполненных работ составляет свыше 120 скважиноопераций. Основной объем работ выполняется при комплексной обработке продуктивных интервалов нагнетательных скважин. Продолжительность эффекта составляет в среднем 6 месяцев.
Использование комплексной пластической перфорации с намывом каверн в призабойной зоне пласта обеспечивает наиболее эффективное гидродинамическое сообщение скважины с пластом, и как следствие, создает идеальные условия для дальнейшей реализации мероприятий, направленных на увеличение производительности скважин. Преимущество использования метода совместно с кислотной обработкой призабойной зоны (ОПЗ) в том, что при проведении ОПЗ закачиваемые химические составы проникают, преимущественно, в хорошо промытые зоны пласта и оказывают слабое воздействие на проблемные зоны околоствольной части пласта. При прокачке указанных составов через гидромониторные насадки комплексного пластического перфоратора происходит принудительное равномерное воздействие струями на все участки призабойной зоны пласта, в том числе, с возможностью акцентированного воздействия на самые проблемные неработающие участки. Возможность проведения ОПЗ с закачкой химических составов в пласт позволяет оказать на призабойную зону как физическое (разрушающее), так и химическое воздействие, что является преимуществом в отношении стандартной схемы проведения ОПЗ через спущенную на насосно-компрессорные трубы (НКТ) воронку.
В то же время, перфоратор может работать в режиме воронки при использовании его циркуляционных отверстий для прокачки жидкостей в пласт и из пласта при освоении скважины. Намыв каверн перед закачкой реагирующих составов в пласт дает возможность очистить призабойную зону от загрязнителей (остатки бурового раствора, тампонажный цемент, асфальто-смолисто-парафиновые отложения и т.д), что позволяет закачиваемым в последствии химическим составам глубже проникать в призабойную зону и является непременным преимуществом относительно стандартных схем ОПЗ.